Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5

被引:79
|
作者
Levi, Liraz [1 ]
Wang, Zeneng [1 ,2 ]
Doud, Mary Kathryn [1 ,3 ]
Hazen, Stanley L. [1 ,2 ,4 ]
Noy, Noa [1 ,5 ]
机构
[1] Cleveland Clin, Dept Cellular & Mol Med, Cleveland, OH 44195 USA
[2] Cleveland Clin, Ctr Cardiovasc Diagnost & Prevent, Cleveland, OH 44195 USA
[3] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA
[4] Cleveland Clin, Dept Cardiovasc Med, Cleveland, OH 44195 USA
[5] Case Western Reserve Univ, Dept Nutr, Cleveland, OH 44106 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
ENDOPLASMIC-RETICULUM STRESS; PROLIFERATOR-ACTIVATED RECEPTORS; CARCINOMA-CELL-GROWTH; BREAST-CANCER CELLS; PPAR-BETA/DELTA; INSULIN-RESISTANCE; DIETARY STEARATE; LIVER-CELLS; EXPRESSION; APOPTOSIS;
D O I
10.1038/ncomms9794
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPAR beta/delta. The data indicate that these activities of LCFA are mediated by FABP5, which delivers ligands from the cytosol to nuclear PPAR beta/delta. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPAR beta/delta pathway. We show further that, by concomitantly promoting the activation of RAR and inhibiting the activation of PPAR beta/delta, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein
    Nan Sheng
    Juan Li
    Hui Liu
    Aiqian Zhang
    Jiayin Dai
    Archives of Toxicology, 2016, 90 : 217 - 227
  • [22] STUDIES ON FATTY ACID-BINDING PROTEINS - THE BINDING-PROPERTIES OF RAT-LIVER FATTY ACID-BINDING PROTEIN
    WILKINSON, TCI
    WILTON, DC
    BIOCHEMICAL JOURNAL, 1987, 247 (02) : 485 - 488
  • [23] Fatty acid binding and conformational stability of mutants of human muscle fatty acid-binding protein
    Prinsen, CFM
    Veerkamp, JH
    BIOCHEMICAL JOURNAL, 1996, 314 : 253 - 260
  • [24] Liver fatty acid-binding protein and obesity
    Atshaves, Barbara P.
    Martin, Gregory G.
    Hostetler, Heather A.
    McIntosh, Avery L.
    Kier, Ann B.
    Schroeder, Friedhelm
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2010, 21 (11): : 1015 - 1032
  • [25] Regulation of gene expression by fatty acids: Special reference to fatty acid-binding protein (FABP)
    Niot, I
    Poirier, H
    Besnard, P
    BIOCHIMIE, 1997, 79 (2-3) : 129 - 133
  • [26] A fatty acid-binding protein of Streptococcus pneumoniae facilitates the acquisition of host polyunsaturated fatty acids
    Gullett, Jessica M.
    Cuypers, Maxime G.
    Frank, Matthew W.
    White, Stephen W.
    Rock, Charles O.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (44) : 16416 - 16428
  • [27] Cytoplasmic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle
    Glatz, JFC
    Schaap, FG
    Binas, B
    Bonen, A
    van der Vusse, GJ
    Luiken, JJFP
    ACTA PHYSIOLOGICA SCANDINAVICA, 2003, 178 (04): : 367 - 371
  • [29] Identification of fatty acid molecules in a Fasciola hepatica immunoprophylactic fatty acid-binding protein
    Espino, AM
    Hillyer, GV
    JOURNAL OF PARASITOLOGY, 2001, 87 (02) : 426 - 428
  • [30] DOES FATTY ACID-BINDING PROTEIN PLAY A ROLE IN FATTY-ACID TRANSPORT
    PEETERS, RA
    VEERKAMP, JH
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 1989, 88 (1-2) : 45 - 49