Particle filtering based parameter estimation for systems with output-error type model structures

被引:114
|
作者
Ding, Jie [1 ]
Chen, Jiazhong [1 ]
Lin, Jinxing [1 ]
Wan, Lijuan [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, Nanjing 210023, Jiangsu, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
STATE-SPACE SYSTEM; ESTIMATION ALGORITHM; NONLINEAR-SYSTEMS; IDENTIFICATION; DELAY; BIAS; RECOVERY;
D O I
10.1016/j.jfranklin.2019.04.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The output-error model structure is often used in practice and its identification is important for analysis of output-error type systems. This paper considers the parameter identification of linear and nonlinear output-error models. A particle filter which approximates the posterior probability density function with a weighted set of discrete random sampling points is utilized to estimate the unmeasurable true process outputs. To improve the convergence rate of the proposed algorithm, the scalar innovations are grouped into an innovation vector, thus more past information can be utilized. The convergence analysis shows that the parameter estimates can converge to their true values. Finally, both linear and nonlinear results are verified by numerical simulation and engineering. (C) 2019 Published by Elsevier Ltd on behalf of The Franklin Institute.
引用
收藏
页码:5521 / 5540
页数:20
相关论文
共 50 条
  • [41] A coupled LMS-LS approach to output-error adaptive IIR filtering
    Mayyas, K
    Aboulnasr, T
    ISSPA 96 - FOURTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 294 - 295
  • [42] A PWA model identification method based on optimal operating region partition with the output-error minimization for nonlinear systems
    Song, Chunyue
    Wang, Jiaorao
    Ma, Xinda
    Zhao, Jun
    JOURNAL OF PROCESS CONTROL, 2020, 88 : 1 - 9
  • [43] Bias compensation-based parameter estimation for output error moving average systems
    Ding, Jie
    Ding, Feng
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2011, 25 (12) : 1100 - 1111
  • [44] The filtering based parameter estimation for two-input single-output bilinear-in-parameter systems
    Zhang, Chen
    Ji, Yan
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1690 - 1695
  • [45] BAYESIAN MODEL PARAMETER-ESTIMATION OF SYSTEMS SUBJECT TO RANDOM INPUT AND OUTPUT MEASUREMENT ERROR
    PERTTUNEN, CD
    IEEE INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING ///, 1989, : 227 - 230
  • [46] Estimation of output measurement variances for error-in-variables model parameter estimation
    Abdi, Kaveh
    McAuley, Kimberley B.
    AICHE JOURNAL, 2022, 68 (08)
  • [47] Coupled stochastic gradient identification algorithms for multivariate output-error systems using the auxiliary model
    Wu Huang
    Feng Ding
    Tasawar Hayat
    Ahmed Alsaedi
    International Journal of Control, Automation and Systems, 2017, 15 : 1622 - 1631
  • [48] Error structures and parameter estimation
    Bouleau, N
    Chorro, C
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (04) : 305 - 310
  • [49] Data filtering based least squares iterative algorithm for parameter identification of output error autoregressive systems
    Chen, Huibo
    Zhang, Wenge
    Ding, Feng
    INFORMATION PROCESSING LETTERS, 2014, 114 (10) : 573 - 578
  • [50] Recursive Identification Methods for Multivariate Output-error Moving Average Systems Using the Auxiliary Model
    Liu, Qinyao
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2018, 16 (03) : 1070 - 1079