Cathode Electrolyte Interphase-Forming Additive for Improving Cycling Performance and Thermal Stability of Ni-Rich LiNixCoyMn1-x-yO2 Cathode Materials

被引:16
|
作者
Lim, Da-Ae [1 ]
Shin, Young-Kyeong [1 ]
Seok, Jin-Hong [1 ]
Hong, Dayoung [1 ]
Ahn, Kyoung Ho [2 ]
Lee, Chul Haeng [2 ]
Kim, Dong-Won [1 ]
机构
[1] Hanyang Univ, Dept Chem Engn, Seoul 04763, South Korea
[2] LG Energy Solut Ltd, Battery R&D, Daejeon 34122, South Korea
基金
新加坡国家研究基金会;
关键词
electrolyte additive; cathode electrolyte interphase; nickel-rich cathode; lithium-ion battery; cycling performance; thermal stability; LITHIUM-ION BATTERIES; ENERGY-DENSITY; CHALLENGES; INTERFACE; PHOSPHATE; BORATE; CELLS; OXIDE;
D O I
10.1021/acsami.2c15685
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-capacity Ni-rich LiNixCoyMn1-x-yO2 (NCM) has been investigated as a promising cathode active material for improving the energy density of lithium-ion batteries (LIBs); however, its practical application is limited by its structural instability and low thermal stability. In this study, we synthesized tetrakis(methacryloyloxyethyl)pyrophosphate (TMAEPPi) as a cathode electrolyte interphase (CEI) additive to enhance the cycling characteristics and thermal stability of the LiNi0.8Co0.1Mn0.1O2 (NCM811) material. TMAEPPi was oxidized to form a uniform Li+-ion-conductive CEI on the cathode surface during initial cycles. A lithium-ion cell (graphite/NCM811) employing a liquid electrolyte containing 0.5 wt % TMAEPPi exhibited superior capacity retention (82.2% after 300 cycles at a 1.0 C rate) and enhanced high-rate performance compared with the cell using a baseline liquid electrolyte. The TMAEPPi-derived CEI layer on NCM811 suppressed electrolyte decomposition and reduced the microcracking of the NCM811 particles. Our results reveal that TMAEPPi is a promising additive for forming stable CEIs and thereby improving the cycling performance and thermal stability of LIBs employing high-capacity NCM cathode materials.
引用
收藏
页码:54688 / 54697
页数:10
相关论文
共 50 条
  • [31] Amphiphilic surfactant-assisted cathode-electrolyte interphases for prolonged cycling performance in Ni-rich NCMA cathode materials of lithium-ion batteries
    Kim, Soon Young
    Lee, Subin
    Yoon, Sae Chan
    Yim, Taeeun
    JOURNAL OF POWER SOURCES, 2025, 633
  • [32] Tracking the Influence of Thermal Expansion and Oxygen Vacancies on the Thermal Stability of Ni-Rich Layered Cathode Materials
    Lee, Eunkang
    Muhammad, Shoaib
    Kim, Taewhan
    Kim, Hyunchul
    Lee, Wontae
    Yoon, Won-Sub
    ADVANCED SCIENCE, 2020, 7 (12)
  • [33] In situ construction of a favorable cathode electrolyte interphase through a fluorosilane additive for high-performance Li-rich cathode materials
    Yuan-Yuan Pan
    Chang-Ding Qiu
    Shi-Jie Qin
    Zuo-Fei Wang
    Jing-Song Yang
    Heng-Jiang Cong
    Fu-Sheng Ke
    Rare Metals, 2022, 41 (11) : 3630 - 3638
  • [34] In situ construction of a favorable cathode electrolyte interphase through a fluorosilane additive for high-performance Li-rich cathode materials
    Yuan-Yuan Pan
    Chang-Ding Qiu
    Shi-Jie Qin
    Zuo-Fei Wang
    Jing-Song Yang
    Heng-Jiang Cong
    Fu-Sheng Ke
    Rare Metals, 2022, 41 : 3630 - 3638
  • [35] In situ construction of a favorable cathode electrolyte interphase through a fluorosilane additive for high-performance Li-rich cathode materials
    Pan, Yuan-Yuan
    Qiu, Chang-Ding
    Qin, Shi-Jie
    Wang, Zuo-Fei
    Yang, Jing-Song
    Cong, Heng-Jiang
    Ke, Fu-Sheng
    RARE METALS, 2022, 41 (11) : 3630 - 3638
  • [36] Electrolyte additive trimethyl phosphite for improving electrochemical performance and thermal stability of LiCoO2 cathode
    Xu, H. Y.
    Xie, S.
    Wang, Q. Y.
    Yao, X. L.
    Wang, Q. S.
    Chen, C. H.
    ELECTROCHIMICA ACTA, 2006, 52 (02) : 636 - 642
  • [37] Recovering valuable metals from LiNixCoyMn1-x-yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching
    Liu, Pengcheng
    Xiao, Li
    Chen, Yifeng
    Tang, Yiwei
    Wu, Jian
    Chen, Han
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 783 : 743 - 752
  • [38] Comprehensive study on lithium-ion battery cathode LiNixCoyMn1-x-yO2 as an air electrode for protonic ceramic fuel cells
    Wang, Yibei
    Wang, Biao
    Qiu, Dongchao
    Niu, Bingbing
    Lu, Chunling
    SOLID STATE IONICS, 2024, 417
  • [39] Sulfonate-Based Artificial Cathode-Electrolyte Interface to Enhance Electrochemical Performance of Ni-Rich Layered Oxide Cathode Materials
    Song, Hye Ji
    Jang, Seol Heui
    Choi, Kwonyoung
    Nam, Sang Cheol
    Mun, Junyoung
    Yim, Taeeun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (19) : 7316 - 7323
  • [40] Optimized Al Doping Improves Both Interphase Stability and Bulk Structural Integrity of Ni-Rich NMC Cathode Materials
    Zhao, Wengao
    Zou, Lianfeng
    Jia, Haiping
    Zheng, Jianming
    Wang, Donghao
    Song, Junhua
    Hong, Chaoyu
    Liu, Rui
    Xu, Wu
    Yang, Yong
    Xiao, Jie
    Wang, Chongmin
    Zhang, Ji-Guang
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) : 3369 - 3377