Criteria of univalence and fully α-accessibility for p-harmonic and p-analytic functions

被引:9
|
作者
Amozova, K. F. [1 ]
Ganenkova, E. G. [1 ]
Ponnusamy, S. [2 ]
机构
[1] Petrozavodsk State Univ, Fac Math & Informat Technol, Petrozavodsk, Russia
[2] ISI, Chennai Ctr, SETS, Madras, Tamil Nadu, India
关键词
Univalence; p-harmonic; p-analytic function; fully a-accessible function; a-accessible domain; starlike domain and Elliptic PDE; DIFFERENTIAL-OPERATORS; BIHARMONIC MAPPINGS; DOMAINS;
D O I
10.1080/17476933.2016.1273908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we present univalence criteria for polyharmonic and polyanalytic functions. Our approach yields a new criterion for a polyharmonic functions to be fully a-accessible. Several examples are presented to illustrate the use of these criteria.
引用
收藏
页码:1165 / 1183
页数:19
相关论文
共 50 条
  • [31] Three spheres theorem for p-harmonic functions
    Miklyukov, Vladimir M.
    Rasila, Antti
    Vuorinen, Matti
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (04): : 1215 - 1230
  • [32] Fatou Theorem of p-harmonic functions on trees
    Kaufman, R
    Wu, JM
    ANNALS OF PROBABILITY, 2000, 28 (03): : 1138 - 1148
  • [33] Monotone quantities of p-harmonic functions and their applications
    Hirsch, Sven
    Miao, Pengzi
    Tam, Luen-fai
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (02) : 599 - 644
  • [34] MEAN VALUE PROPERTY FOR p-HARMONIC FUNCTIONS
    Giorgi, Tiziana
    Smits, Robert
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (07) : 2453 - 2463
  • [35] Explicit p-harmonic functions on the real Grassmannians
    Ghandour, Elsa
    Gudmundsson, Sigmundur
    ADVANCES IN GEOMETRY, 2023, 23 (03) : 315 - 321
  • [36] Estimates for p-harmonic functions vanishing on a flat
    Lundstrom, Niklas L. P.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 6852 - 6860
  • [37] HOLDER CONTINUITY OF DEGENERATE p-HARMONIC FUNCTIONS
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 567 - 577
  • [38] On convexity of level sets of p-harmonic functions
    Zhang, Ting
    Zhang, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) : 2065 - 2081
  • [39] NEWTON INEQUALITIES FOR p-HARMONIC CONVEX FUNCTIONS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Iftikhar, Sabah
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (02): : 239 - 250
  • [40] On the Lipschitz character of orthotropic p-harmonic functions
    Bousquet, P.
    Brasco, L.
    Leone, C.
    Verde, A.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)