Improved Approximation for Time-Dependent Shortest Paths

被引:0
|
作者
Omran, Masoud [1 ]
Sack, Joerg-Ruediger [1 ]
机构
[1] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
来源
关键词
NETWORKS; ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the approximation of minimum travel time paths in time dependent networks. The travel time on each link of the network is a piecewise linear function of the departure time from the start node of the link. The objective is to find the minimum travel time to a destination node d, for all possible departure times at source node s. Dehne et al. proposed an exact output-sensitive algorithm for this problem [6, 7] that improves, in most cases, upon the existing algorithms. They also provide an approximation algorithm. In [10, 11], Foschini et al. show that this problem has super-polynomial complexity and present an epsilon-approximation(1) algorithm that runs O(lambda/epsilon log(T-max/T-min) log(L/lambda epsilon T-min)) shortest path computations, where O is the total number of linear pieces in travel time functions on links, L is the horizontal span of the travel time function and T-min and T-max are the minimum and maximum travel time values, respectively. In this paper, we present two T-approximation algorithms that improve upon Foschini et al.'s result. Our first algorithm runs O(lambda/epsilon (log(T-max/T-min) + log(L/lambda T-min))) shortest path computations at fixed departure times. In our second algorithm, we reduce the dependency on L, by using only O(lambda(1/epsilon log(T-max/T-min) + log(L/lambda epsilon T-min))) total shortest path computations.
引用
收藏
页码:453 / 464
页数:12
相关论文
共 50 条
  • [41] TIME-DEPENDENT HARTREE APPROXIMATION AND TIME-DEPENDENT HARMONIC-OSCILLATOR MODEL
    BLAIZOT, JP
    NUCLEAR PHYSICS A, 1982, 377 (01) : 237 - 260
  • [42] A TIME-DEPENDENT VARIATIONAL PRINCIPLE AND THE TIME-DEPENDENT HARTREE APPROXIMATION IN HYDRODYNAMICAL FORM
    LILL, JV
    HAFTEL, MI
    HERLING, GH
    JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (09): : 4933 - 4939
  • [43] Approximation algorithms for time-dependent orienteering
    Fomin, FV
    Lingas, A
    INFORMATION PROCESSING LETTERS, 2002, 83 (02) : 57 - 62
  • [44] TIME-DEPENDENT FORMULATION OF SEMICLASSICAL APPROXIMATION
    LEBEDEFF, SA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (04): : 590 - &
  • [45] APPROXIMATION FOR TIME-DEPENDENT QUANTUM SYSTEMS
    HAMMANN, TF
    FELLAH, M
    JOURNAL DE PHYSIQUE LETTRES, 1978, 39 (11): : L155 - L157
  • [46] Time-Dependent Contraction Hierarchies and Approximation
    Batz, Gernot Veit
    Geisberger, Robert
    Neubauer, Sabine
    Sanders, Peter
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2010, 6049 : 166 - 177
  • [47] ON THE BILINEAR APPROXIMATION FOR TIME-DEPENDENT HAMILTONIANS
    ECHAVE, J
    FERNANDEZ, FM
    CASTRO, EA
    JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (02): : 1188 - 1193
  • [48] APPROXIMATION OF TIME-DEPENDENT FREE BOUNDARIES
    FAGE, D
    NUMERISCHE MATHEMATIK, 1982, 40 (02) : 179 - 199
  • [49] MINIMUM WEIGHT PATHS IN TIME-DEPENDENT NETWORKS
    ORDA, A
    ROM, R
    NETWORKS, 1991, 21 (03) : 295 - 319
  • [50] Ranking paths in stochastic time-dependent networks
    Nielsen, Lars Relund
    Andersen, Kim Allan
    Pretolani, Daniele
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 236 (03) : 903 - 914