Automorphisms of Riemann-Cartan manifolds

被引:1
|
作者
Pan'zhenskii, V. I. [1 ]
机构
[1] Penza State Univ, Penza, Russia
关键词
Riemann-Cartan manifold; Lie group of automorphisms; automorphism group of maximal dimension; torsion; curvature;
D O I
10.1134/S000143461509028X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the maximal dimension of the Lie group of automorphisms of an n-dimensional Riemann-Cartan manifold (space) (M (n) , g, ) equals n(n - 1)/2+ 1 for n > 4 and, if the connection is semisymmetric, for n a parts per thousand yen 2. If n = 3, then the maximal dimension of the group equals 6. Three-dimensional Riemann-Cartan spaces (M (3), g, ) with automorphism group of maximal dimension are studied: the torsion s and the curvature are introduced, and it is proved that s and are characteristic constants of the space and = k - s (2), where k is the sectional curvature of the Riemannian space (M (3), g); a geometric interpretation of torsion is given. For Riemann-Cartan spaces with antisymmetric connection, the notion of torsion at a given point in a given three-dimensional direction is introduced.
引用
收藏
页码:613 / 623
页数:11
相关论文
共 50 条
  • [21] Tidal heating in a Riemann-Cartan spacetime
    Hensh, Sudipta
    Liberati, Stefano
    Vitagliano, Vincenzo
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [22] Deviation equation in Riemann-Cartan spacetime
    Puetzfeld, Dirk
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [23] NEW LOOK AT THE RIEMANN-CARTAN THEORY
    AURILIA, A
    SPALLUCCI, E
    PHYSICAL REVIEW D, 1990, 42 (02): : 464 - 468
  • [24] Dirac Particle in Riemann-Cartan Spacetimes
    Obukhov, Yu. N.
    Silenko, A. J.
    Teryaev, O. V.
    PHYSICS OF PARTICLES AND NUCLEI, 2018, 49 (01) : 9 - 10
  • [25] Riemann-Cartan Gravity with Dynamical Signature
    Bondarenko, S.
    Zubkov, M. A.
    JETP LETTERS, 2022, 116 (01) : 54 - 60
  • [26] PROPERTIES OF A SPIN FLUID IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    PLATANIA, G
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 95 (08) : 425 - 428
  • [27] Riemann-Cartan geometry of nonlinear disclination mechanics
    Yavari, Arash
    Goriely, Alain
    MATHEMATICS AND MECHANICS OF SOLIDS, 2013, 18 (01) : 91 - 102
  • [28] Torsion Structure in Riemann-Cartan Manifold and Dislocation
    Xiguo Lee
    Marcello Baldo
    Yishi Duan
    General Relativity and Gravitation, 2002, 34 : 1569 - 1577
  • [29] Evaluation of the heat kernel in Riemann-Cartan space
    Yajima, S
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (09) : 2423 - 2435
  • [30] String background fields and the Riemann-Cartan geometry
    Vasilic, Milovan
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (07)