Preparation and characterization of Ti4+-doped LiFePO4 cathode materials for lithium-ion batteries

被引:76
|
作者
Wu, She-huang [1 ]
Chen, Mao-Sung [1 ]
Chien, Chao-Jung [2 ]
Fu, Yen-Pei [2 ]
机构
[1] Tatung Univ, Dept Mat Engn, Taipei 104, Taiwan
[2] Natl Dong Hwa Univ, Dept Mat Engn, Shoufeng 974, Hualien, Taiwan
关键词
Lithium iron phosphate; Olivine structure; Lithium-ion battery; ELECTROCHEMICAL PROPERTIES; PERFORMANCE;
D O I
10.1016/j.jpowsour.2009.01.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Olivine structured LiFePO4 (lithium iron phosphate) and Ti4(+)-doped LiFe1-xTixPO4 (0.01 <= x <= 0.09) powders were synthesized via a solution route followed by heat-treatment at 700 degrees C for 8 h under N-2 flowing atmosphere. The compositions, crystalline structure, morphology, carbon content. and specific surface area of the prepared powders were investigated with ICP-OES, XRD, TEM, SEM, EA, and BET Capacity retention study was used to investigate the effects of Ti4+ partial substitution on the intercalation/deintercalation of Li+ ions in the olivine structured cathode materials. Among the prepared powders, LiFe0.97Ti0.03PO4 manifests the most promising cycling performance as it was cycled with C/10, C/5, C/2, 1C, 2C, and 3C rate. It showed initial discharge capacity of 135 mAh g(-1) at 30 degrees C with C/10 rate. From the results of GSAS refinement for the prepared samples, the doped-Ti4+ ions did not occupy the Fe2+ sites as expected. However, the occupancy of the doped Ti4+ ions are still not clear, and theoretical calculations are needed for further studies. From the variation of lattice parameters calculated by the least square method without refinement, it suggested that Ti4+-doped LiFePO4 samples formed solid solutions at low doping levels while TiO2 was also observed with TEM in samples prepared with doping level higher than 5 mol%. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:440 / 444
页数:5
相关论文
共 50 条
  • [21] Synthesis and electrochemical characterizations of nano-crystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries
    D. Arumugam
    G. Paruthimal Kalaignan
    P. Manisankar
    Journal of Solid State Electrochemistry, 2009, 13 : 301 - 307
  • [22] Synthesis and electrochemical characterizations of nano-crystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries
    Arumugam, D.
    Kalaignan, G. Paruthimal
    Manisankar, P.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (02) : 301 - 307
  • [23] Advances in new cathode material LiFePO4 for lithium-ion batteries
    Zhang, Yong
    Huo, Qing-yuan
    Du, Pei-pei
    Wang, Li-zhen
    Zhang, Ai-qin
    Song, Yan-hua
    Lv, Yan
    Li, Guang-yin
    SYNTHETIC METALS, 2012, 162 (13-14) : 1315 - 1326
  • [24] LiFePO4 composites decorated with nitrogen-doped carbon as superior cathode materials for lithium-ion batteries
    Yu Ding
    Pei Pan
    Lihui Chen
    Zhengbing Fu
    Jun Du
    Liangui Guo
    Feng Wang
    Ionics, 2017, 23 : 3295 - 3302
  • [25] Electrochemical performance of Yb-doped LiFePO4/C composites as cathode materials for lithium-ion batteries
    Goktepe, Huseyin
    RESEARCH ON CHEMICAL INTERMEDIATES, 2013, 39 (07) : 2979 - 2987
  • [26] LiFePO4–LiMn2O4 composite cathode materials for lithium-ion batteries
    E. V. Makhonina
    A. E. Medvedeva
    V. S. Dubasova
    V. S. Pervov
    I. L. Eremenko
    Inorganic Materials, 2015, 51 : 1264 - 1269
  • [27] Vanadium Substitution of LiFePO4 Cathode Materials To Enhance the Capacity of LiFePO4-Based Lithium-Ion Batteries
    Chiang, Ching-Yu
    Su, Hui-Chia
    Wu, Pin-Jiun
    Liu, Heng-Jui
    Hu, Chih-Wei
    Sharma, Neeraj
    Peterson, Vanessa K.
    Hsieh, Han-Wei
    Lin, Yu-Fang
    Chou, Wu-Ching
    Lee, Chih-Hao
    Lee, Jyh-Fu
    Shew, Bor-Yuan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (46): : 24424 - 24429
  • [28] Synthesis of LiFePO4/C composite cathode for lithium-ion batteries
    Cech, O.
    Thomas, J. E.
    Moreno, M. S.
    Visintin, A.
    Sedlarikova, M.
    Vondrak, J.
    ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 11), 2011, 32 (01): : 23 - 31
  • [29] Development and challenges of LiFePO4 cathode material for lithium-ion batteries
    Yuan, Li-Xia
    Wang, Zhao-Hui
    Zhang, Wu-Xing
    Hu, Xian-Luo
    Chen, Ji-Tao
    Huang, Yun-Hui
    Goodenough, John B.
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (02) : 269 - 284
  • [30] LiFePO4 composites decorated with nitrogen-doped carbon as superior cathode materials for lithium-ion batteries
    Ding, Yu
    Pan, Pei
    Chen, Lihui
    Fu, Zhengbing
    Du, Jun
    Guo, Liangui
    Wang, Feng
    IONICS, 2017, 23 (12) : 3295 - 3302