Active tunable terahertz resonators based on hybrid vanadium oxide metasurface

被引:18
|
作者
Liu, Huan [1 ,2 ]
Fan, Ya-Xian [2 ]
Chen, Hong-Ge [1 ]
Li, Lin [1 ]
Tao, Zhi-Yong [1 ,2 ]
机构
[1] Harbin Engn Univ, Minist Educ China, Key Lab In Fiber Integrated Opt, Harbin 150001, Heilongjiang, Peoples R China
[2] Guilin Univ Elect Technol, Acad Marine Informat Technol, Beihai 536000, Peoples R China
基金
中国国家自然科学基金;
关键词
Resonances; Thermal control; Phase transition; Hybrid metasurface; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; METAMATERIAL; SPECTROSCOPY; ANALOG;
D O I
10.1016/j.optcom.2019.04.054
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hybrid terahertz (THz) metamaterial resonators have exhibited superior reconfigurable resonant response enabled by active materials, such as liquid crystals, graphene, and semiconductors. However, the tunable range of constitutive parameters of materials is still limited, which leads to the low modulation depth of THz devices. Unlike other phase change materials, vanadium dioxide (VO2) exhibits an insulator-to-metal transition characteristic and the conductivity can be increased by 4-5 orders of magnitude under external stimulus including electric fields, optical, and thermal pumps. Here, we propose an active tunable THz resonator based on a hybrid VO2 metasurface for thermal control. The simulated results show that by external thermal stimulation, we realize the tuning between the single and double resonant modes. The resonant peak at high frequency disappears while the low frequency peak is enhanced with the increasing temperature. The simulated surface electric fields confirm the physical mechanism of the excellent tunable performance that the L-shaped and cross resonances play a dominant role at the low and high temperature, respectively, due to the VO2 phase transition. Such a hybrid VO2 metasurface resonator with tunable characteristics will greatly promote the practical application of THz functional devices, such as modulators, sensors and fillers.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [31] Tunable wide band near-perfect absorber for terahertz waves based on a vanadium dioxide metasurface
    Tara Afra
    Walter Fuscaldo
    Dimitrios C. Zografopoulos
    Teresa Natale
    Francesco Dell’Olio
    Optical and Quantum Electronics, 57 (5)
  • [32] A giantly chirality tunable terahertz metasurface based on 3D folded structure with vanadium dioxide
    Yang, Fan
    Li, Hui
    Song, Chunyu
    Li, Jie
    Li, Jitao
    Zheng, Chenglong
    Yue, Zhen
    Ding, Xin
    Zhang, Yating
    Yao, Jianquan
    OPTIK, 2022, 262
  • [33] Multiband switchable terahertz vanadium dioxide-GeTe hybrid metasurface
    Li, Jiu Sheng
    Wu, Rou-Lan
    OPTICAL MATERIALS EXPRESS, 2023, 13 (12) : 3456 - 3464
  • [34] Electromechanically tunable graphene-based terahertz metasurface
    Roy, Shuvajit
    Debnath, Kapil
    OPTICS COMMUNICATIONS, 2023, 534
  • [35] Dynamically Tunable of Terahertz Waves Based on Graphene Metasurface
    Zheng, Shu-quan
    Zhao, Qi-xiang
    Jiang, Xing
    Peng, Lin
    2020 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT 2020 ONLINE), 2020,
  • [36] Broadband Tunable Terahertz Absorber Based on Graphene Metasurface
    Qian, Jiajia
    Zhou, Jun
    Zhu, Zheng
    Ge, Zhenzhen
    Wu, Shuting
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [37] Graphene based tunable metasurface for terahertz scattering manipulation
    Zhang Yin
    Feng Yi-Jun
    Jiang Tian
    Cao Jie
    Zhao Jun-Ming
    Zhu Bo
    ACTA PHYSICA SINICA, 2017, 66 (20)
  • [38] Magnetically Tunable Graphene-Based Terahertz Metasurface
    Lu, Yafeng
    Wang, Chen
    Zhao, Shiqiang
    Wen, Yongzheng
    FRONTIERS IN PHYSICS, 2021, 8
  • [39] Hybrid dual-mode tunable polarization conversion metasurface based on graphene and vanadium dioxide
    Fang, Jiaxing
    Zhu, Wei
    Cao, Lin
    Huang, Xiaotian
    Zhang, Bohan
    He, Daping
    Wang, Shengxiang
    OPTICS EXPRESS, 2023, 31 (14) : 23095 - 23105
  • [40] Controllable electromagnetically induced transparency in an electrically tunable terahertz hybrid metasurface
    Yang, Ruisheng
    Zhang, Fuli
    Li, Zhichen
    Fu, Quanhong
    Fan, Yuancheng
    OPTICS AND LASER TECHNOLOGY, 2023, 163