Solving the Hamilton-Jacobi-Bellman equation for a stochastic system with state constraints

被引:0
|
作者
Rutquist, Per [1 ,2 ]
Wik, Torsten [3 ]
Breitholtz, Claes [3 ]
机构
[1] Tomlab Optimizat AB, Vasteras, Sweden
[2] Chalmers, S-41296 Gothenburg, Sweden
[3] Chalmers, Dept Signals & Syst, S-41296 Gothenburg, Sweden
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a method for finding a stationary solution to the Hamilton-Jacobi-Bellman (HJB) equation for a stochastic system with state constraints. A variable transformation is introduced which turns the HJB equation into a combination of an eigenvalue problem, a set of partial differential equations (PDEs), and a point-wise equation. As a result the difficult infinite boundary conditions of the original HJB becomes homogeneous. To illustrate, we numerically solve for the optimal control of a Linear Quadratic Gaussian (LQG) system with state constraints. A reasonably accurate solution is obtained even with a very small number of collocation points (three in each dimension), which suggests that the method could be used on high order systems, mitigating the curse of dimensionality. Source code for the example is available online.
引用
收藏
页码:1840 / 1845
页数:6
相关论文
共 50 条
  • [41] A feedback optimal control by Hamilton-Jacobi-Bellman equation
    Zhu, Jinghao
    EUROPEAN JOURNAL OF CONTROL, 2017, 37 : 70 - 74
  • [42] Hamilton-Jacobi-Bellman Equations
    Festa, Adriano
    Guglielmi, Roberto
    Hermosilla, Christopher
    Picarelli, Athena
    Sahu, Smita
    Sassi, Achille
    Silva, Francisco J.
    OPTIMAL CONTROL: NOVEL DIRECTIONS AND APPLICATIONS, 2017, 2180 : 127 - 261
  • [43] Hamilton-Jacobi-Bellman Equation for Control Systems With Friction
    Tedone, Fabio
    Palladino, Michele
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (12) : 5651 - 5664
  • [44] MEASURABLE VIABILITY THEOREMS AND THE HAMILTON-JACOBI-BELLMAN EQUATION
    FRANKOWSKA, H
    PLASKACZ, S
    RZEZUCHOWSKI, T
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (02) : 265 - 305
  • [45] Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation
    Beard, RW
    Saridis, GN
    Wen, JT
    AUTOMATICA, 1997, 33 (12) : 2159 - 2177
  • [46] MEASURABLE VIABILITY THEOREMS AND HAMILTON-JACOBI-BELLMAN EQUATION
    FRANKOWSKA, H
    PLASKACZ, S
    RZEZUCHOWSKI, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (02): : 131 - 134
  • [47] Numerically efficient approximations to the Hamilton-Jacobi-Bellman equation
    Lawton, J
    Beard, RW
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 195 - 199
  • [48] On the Hamilton-Jacobi-Bellman Equation by the Homotopy Perturbation Method
    Atangana, Abdon
    Ahmed, Aden
    Noutchie, Suares Clovis Oukouomi
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [49] ON THE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    ACTA APPLICANDAE MATHEMATICAE, 1983, 1 (01) : 17 - 41
  • [50] State-constrained control based on linearization of the Hamilton-Jacobi-Bellman equation
    Department of Signals and Systems, Chalmers University of Technology, SE 412 96 Göteborg, Sweden
    不详
    Proc IEEE Conf Decis Control, (5192-5197):