Nodal Sets and Doubling Conditions in Elliptic Homogenization

被引:8
|
作者
Lin, Fanghua [1 ]
Shen, Zhongwei [2 ]
机构
[1] Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
Nodal sets; homogenization; doubling condition;
D O I
10.1007/s10114-019-8228-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with uniform measure estimates for nodal sets of solutions in elliptic homogenization. We consider a family of second-order elliptic operators {L-epsilon} in divergence form with rapidly oscillating and periodic coefficients. We show that the (d-1)-dimensional Hausdorff measures of the nodal sets of solutions to L-epsilon(u(epsilon)) = 0 in a ball in (d) are bounded uniformly in epsilon > 0. The proof relies on a uniform doubling condition and approximation of u(epsilon) by solutions of the homogenized equation.
引用
收藏
页码:815 / 831
页数:17
相关论文
共 50 条
  • [41] Homogenization of a class of elliptic problems with nonlinear boundary conditions in domains with small holes
    Ould-Hammouda, Amar
    Zaki, Rachad
    CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (01) : 77 - 88
  • [43] Homogenization of Elliptic Problems with Neumann Boundary Conditions in Non-smooth Domains
    Geng, Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (04) : 612 - 628
  • [44] Uniform Lipschitz Estimates of Homogenization of Elliptic Systems in Divergence Form with Dini Conditions
    Dong, Rong
    Li, Dong-sheng
    Zhang, Hai-liang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (01): : 48 - 68
  • [45] On sets with small additive doubling in product sets
    Zhelezov, Dmitrii
    JOURNAL OF NUMBER THEORY, 2015, 157 : 170 - 183
  • [46] Homogenization of degenerate elliptic equations
    Bellieud, M
    Bouchitte, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08): : 787 - 792
  • [47] On the homogenization of degenerate elliptic equations
    V. V. Zhikov
    S. E. Pastukhova
    S. V. Tikhomirova
    Doklady Mathematics, 2006, 74 : 716 - 720
  • [48] Learning Homogenization for Elliptic Operators
    Bhattacharya, Kaushik
    Kovachki, Nikola B.
    Rajan, Aakila
    Stuart, Andrew M.
    Trautner, Margaret
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (04) : 1844 - 1873
  • [49] HOMOGENIZATION FOR A STIFF ELLIPTIC PROBLEM
    ARTOLA, M
    CESSENAT, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (12): : 761 - 766
  • [50] Homogenization of degenerate elliptic equations
    V. V. Zhikov
    S. E. Pastukhova
    Siberian Mathematical Journal, 2008, 49