Resistance to hydride formation in zirconium: An emerging possibility

被引:60
|
作者
Krishna, K. V. Mani
Sain, A.
Samajdar, I. [1 ]
Dey, G. K.
Srivastava, D.
Neogy, S.
Tewari, R.
Banerjee, S.
机构
[1] Indian Inst Technol, Dept Met Engn & Mat Sci, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India
[3] Bhabha Atom Res Ctr, Div Mat Sci, Bombay 400085, Maharashtra, India
关键词
zirconium; hydride formation; grain boundary; microtexture; precipitation;
D O I
10.1016/j.actamat.2006.06.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fully recrystallized Zircaloy 2 was subjected to hydride formation through gaseous hydrogen charging. Primarily grain boundary hydrides were observed. To describe the relative preference, if any, a hydride preference index (HPI) was proposed: HPIQ = f(h,Q)/f(r-Q), where f(h,Q) and f(r,Q) are the respective fractions of Q-type boundary present among hydrided boundaries and present in the total sample. HPIQ values were estimated from 1200 distinctly hydrided boundaries and showed a clear preference for hydride formation and grain boundary nature. Coincident site lattice boundaries were, in general, resistant to hydride formation. Elastically harder grains or orientations also arrested the formation of hydrides. The study indicates a clear possibility: a previously unknown/uncharted possibility of suitably 'tailored' zirconium microstructures, microstructures with reduced potential for 'hydride embrittlement' and delayed hydrogen cracking. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4665 / 4675
页数:11
相关论文
共 50 条
  • [21] Mechanism and Conditions for Continuous Hydride Layer Formation in Zirconium Cladding
    V. V. Novikov
    O. V. Khomyakov
    Yu. N. Devyatko
    Atomic Energy, 2018, 123 : 389 - 398
  • [22] Ab initio study of competitive hydride formation in zirconium alloys
    Thuinet, Ludovic
    Besson, Remy
    INTERMETALLICS, 2012, 20 (01) : 24 - 32
  • [23] A phase-field model for hydride formation in polycrystalline metals: Application to δ-hydride in zirconium alloys
    Heo, Tae Wook
    Colas, Kimberly B.
    Motta, Arthur T.
    Chen, Long-Qing
    ACTA MATERIALIA, 2019, 181 : 262 - 277
  • [24] SUPERSTOICHIOMETRIC ZIRCONIUM HYDRIDE
    KUPRIAZHKIN, AJ
    SHCHEPETKIN, AA
    ZABOLOTSKAJA, EV
    PLETNEV, RN
    ALIAMOVSKII, SI
    KITAEV, GA
    DOKLADY AKADEMII NAUK SSSR, 1987, 294 (05): : 1159 - 1161
  • [25] THE TEMPERATURE-DEPENDENT CHANGES OF THE KINETICS AND MORPHOLOGY OF HYDRIDE FORMATION IN ZIRCONIUM
    BLOCH, J
    JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 216 (02) : 187 - 195
  • [26] Characterizing the crystal structure and formation induced plasticity of γ-hydride phase in zirconium
    Long, Fei
    Badr, Nima N.
    Yao, Zhongwen
    Daymond, Mark R.
    MATERIALIA, 2019, 8
  • [27] THE ROLE OF ELASTIC STRAINS IN THE FORMATION OF STACKS OF HYDRIDE PRECIPITATES IN ZIRCONIUM ALLOYS
    PEROVIC, V
    WEATHERLY, GC
    SIMPSON, CJ
    SCRIPTA METALLURGICA, 1982, 16 (04): : 409 - 412
  • [28] SPONTANEOUS HYDRIDE FORMATION IN BETA-PHASE NIOBIUM ZIRCONIUM ALLOYS
    FLEWITT, PEJ
    ASH, PJ
    CROCKER, AG
    ACTA METALLURGICA, 1976, 24 (07): : 669 - 676
  • [29] DEFECT COMPLEX-FORMATION DURING ANNEALING OF IRRADIATED ZIRCONIUM HYDRIDE
    BIRZHEVOI, GA
    BYKOV, VN
    PINCHUK, PG
    FIZIKA METALLOV I METALLOVEDENIE, 1976, 41 (05): : 1096 - 1099
  • [30] Hydride Phases and Hydride Orientation in Zirconium Alloys
    Zeng Wen
    Luan Bai-feng
    Liu Na
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2018, 46 (06): : 11 - 18