Spatial-depth functional estimation of ocean temperature from non-separable covariance models

被引:1
|
作者
Espejo, R. M. [1 ]
Fernandez-Pascual, R. [1 ]
Ruiz-Medina, M. D. [1 ]
机构
[1] Univ Granada, Granada, Spain
关键词
Bayesian estimation; Empirical orthogonal functions; Moment-based estimation; Ocean temperature; Spatial-depth functional regression; Spatial-depth functional covariates; SURFACE-TEMPERATURE; HILBERTIAN PROCESSES; WAVELET REGRESSION; RANDOM-FIELDS; PREDICTION; EQUATIONS; SYSTEMS;
D O I
10.1007/s00477-016-1259-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatial-depth functional regression is applied for the estimation of ocean temperature, with projection onto the eigenvectors of the empirical covariance operator of the functional response (i.e., onto the Empirical Orthogonal Functions in space and depth). Moment-based estimation is performed to approximate the regression operators in the subspace generated by the empirical eigenvectors associated with nonnull eigenvalues. In addition, Bayesian estimation is performed to approximate the regression operators in the subspace generated by the empirical eigenvectors associated with almost null eigenvalues. The cross-validation results obtained, together with the spatial-depth residual correlation analysis carried out on a real data set for the South Atlantic area, to the east of Argentina and the Falkland Islands, represent an improvement on those provided by the wavelet-based approach recently proposed in Fernandez-Pascual (Stoch Environ Res Risk Assess 30:523-557, 2016).
引用
收藏
页码:39 / 51
页数:13
相关论文
共 13 条
  • [1] Spatial-depth functional estimation of ocean temperature from non-separable covariance models
    R. M. Espejo
    R. Fernández-Pascual
    M. D. Ruiz-Medina
    Stochastic Environmental Research and Risk Assessment, 2017, 31 : 39 - 51
  • [2] Spatio-temporal circular models with non-separable covariance structure
    Mastrantonio, Gianluca
    Lasinio, Giovanna Jona
    Gelfand, Alan E.
    TEST, 2016, 25 (02) : 331 - 350
  • [3] Spatio-temporal circular models with non-separable covariance structure
    Gianluca Mastrantonio
    Giovanna Jona Lasinio
    Alan E. Gelfand
    TEST, 2016, 25 : 331 - 350
  • [4] Methods for generating non-separable spatiotemporal covariance models with potential environmental applications
    Kolovos, A
    Christakos, G
    Hristopulos, DT
    Serre, ML
    ADVANCES IN WATER RESOURCES, 2004, 27 (08) : 815 - 830
  • [5] Semi-parametric estimation of non-separable models: a minimum distance from independence approach
    Komunjer, Ivana
    Santos, Andres
    ECONOMETRICS JOURNAL, 2010, 13 (03): : S28 - S55
  • [6] Identification and estimation of local average derivatives in non-separable models without monotonicity
    Hoderlein, Stefan
    Mammen, Enno
    ECONOMETRICS JOURNAL, 2009, 12 (01): : 1 - 25
  • [7] A Class of Convolution-Based Models for Spatio-Temporal Processes with Non-Separable Covariance Structure
    Rodrigues, Alexandre
    Diggle, Peter J.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (04) : 553 - 567
  • [8] The merits of adding complexity: non-separable preferences in spatial models of European Union politics
    Finke, Daniel
    Fleig, Andreas
    JOURNAL OF THEORETICAL POLITICS, 2013, 25 (04) : 546 - 575
  • [9] A new approach for estimation of wavelets with non-separable kernel from a given image
    Gupta, A
    Joshi, SD
    Prasad, S
    2004 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATIONS (SPCOM), 2004, : 17 - 21
  • [10] Activation detection in functional MRI based on non-separable space-time noise models
    Noh, Joonki
    Solo, Victor
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 580 - +