Activation detection in functional MRI based on non-separable space-time noise models

被引:0
|
作者
Noh, Joonki [1 ]
Solo, Victor [2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ New South Wales, Sch Elect Engn, Sydney, NSW 2052, Australia
关键词
functional MRI; activation detection; nonseparable space-time noise models; spatiotemporal correlation; and the parametric cepstrum;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Detecting activated regions in the human brain by cognitive tasks is a significant task in the data analysis using functional MRI (FMRI). To create a detection statistic for activation, noise models under two assumptions; 1) spatial independence and 2) space-time separability have been dominantly used in the FMRI data analysis. In this paper, we propose a novel detection statistic derived from noise models with spatiotemporal correlation and without space-time separability. In order to obtain a sufficiently flexible class of noise models for nonseparable space-time processes, an unusual noise modeling based on truncated cepstrum expansion is suggested. Developed methods are applied to a human dataset.
引用
收藏
页码:580 / +
页数:2
相关论文
共 50 条
  • [1] Blur-generated non-separable space-time models
    Brown, PE
    Kåresen, KF
    Roberts, GO
    Tonellato, S
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 : 847 - 860
  • [2] Non-separable wave particle in space-time
    Tan, C. Z.
    OPTIK, 2015, 126 (20): : 2640 - 2642
  • [3] Generation of Topological Space-Time Non-Separable Light Pulses
    Zdagkas, Apostolos
    Hou, Yaonan
    Savinov, Vassili
    Zhang, Huifang
    Buchnev, Oleksandr
    Papasimakis, Nikitas
    Zheludev, Nikolay, I
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [4] Space-Time Non-Separable Dynamics of Ultrashort Vortex Pulse With Power Exponential Spectrum
    Singh, Shakti
    Mishra, Akhilesh Kumar
    ANNALEN DER PHYSIK, 2025,
  • [5] Noise robustness in the detection of non-separable random unitary maps
    Macchiavello, C.
    Rossi, M.
    PHYSICA SCRIPTA, 2013, T153
  • [6] A flexible class of non-separable cross-covariance functions for multivariate space-time data
    Bourotte, Marc
    Allard, Denis
    Porcu, Emilio
    SPATIAL STATISTICS, 2016, 18 : 125 - 146
  • [7] The role of visualisation in the choice of stationary non-separable space-time covariance functions: an application to air pollution data
    Montero, Jose-Maria
    Fernandez-Aviles, Gema
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2015, 29 (10) : 1887 - 1909
  • [8] Testing for space-time separability in functional MRI
    Noh, Joonki
    Solo, Victor
    2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 412 - +
  • [9] Space-time threshold detection in non-additive non-Gaussian noise fields
    Maras, AM
    Kokkinos, EA
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (04): : 675 - 686
  • [10] Spatial-depth functional estimation of ocean temperature from non-separable covariance models
    R. M. Espejo
    R. Fernández-Pascual
    M. D. Ruiz-Medina
    Stochastic Environmental Research and Risk Assessment, 2017, 31 : 39 - 51