A quadtree-polygon-based scaled boundary finite element method for crack propagation modeling in functionally graded materials

被引:45
|
作者
Chen, X. [1 ]
Luo, T. [2 ]
Ooi, E. T. [3 ]
Ooi, E. H. [4 ]
Song, C. [5 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Civil Engn, Suzhou 215011, Peoples R China
[2] Xijing Univ, Sch Civil Engn, Xian 710123, Shaanxi, Peoples R China
[3] Federat Univ Australia, Sch Engn & Informat Technol, Ballarat, Vic 3350, Australia
[4] Monash Univ Malaysia, Sch Engn, Bandar Sunway 47500, Selangor, Malaysia
[5] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2031, Australia
关键词
Scaled boundary finite element method; Functionally graded materials; Quadtree; Fracture; Crack propagation; STRESS INTENSITY FACTORS; FRACTURE-ANALYSIS; COUPLED METHOD; GROWTH; MESHES; MEDIA;
D O I
10.1016/j.tafmec.2018.01.008
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a method to improve the computational efficiency of the scaled boundary finite element formulation for functionally graded materials. Both isotropic and orthotropic functionally graded materials are considered. This is achieved using a combination of quadtree and polygon meshes. This hybrid meshing approach is particularly suitable to be used with the SBFEM for functionally graded materials because of the significant amount of calculations required to compute the stiffness matrices of the polygons/cells in the mesh. When a quadtree structure is adopted, most of the variables required for the numerical simulation can be pre-computed and stored in the memory, retrieved and scaled as required during the computations, leading to an efficient method for crack propagation modeling. The scaled boundary finite element formulation enables accurate computation of the stress intensity factors directly from the stress solutions without any special post-processing techniques or local mesh refinement in the vicinity of the crack tip. Numerical benchmarks demonstrate the efficiency of the proposed method as opposed to using a purely polygon-mesh based approach.
引用
收藏
页码:120 / 133
页数:14
相关论文
共 50 条
  • [41] Modelling multiple cohesive crack propagation using a finite element-scaled boundary finite element coupled method
    Ooi, E. T.
    Yang, Z. J.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (07) : 915 - 929
  • [42] Modelling crack propagation in reinforced concrete using a hybrid finite element-scaled boundary finite element method
    Ooi, Ean Tat
    Yang, Zhen Jun
    ENGINEERING FRACTURE MECHANICS, 2011, 78 (02) : 252 - 273
  • [43] NURBS-boundary-based quadtree scaled boundary finite element method study for irregular design domain
    Li, Xinqing
    Su, Hailiang
    Yang, Jianghong
    Gao, Guifeng
    Wang, Yingjun
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 159 : 418 - 433
  • [44] Numerical study on crack propagation simulation in functionally graded materials by enriched natural element method
    Cho, Jin-Rae
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (06) : 2487 - 2495
  • [45] Numerical study on crack propagation simulation in functionally graded materials by enriched natural element method
    Jin-Rae Cho
    Journal of Mechanical Science and Technology, 2020, 34 : 2487 - 2495
  • [46] Image-based numerical prediction for effective thermal conductivity of heterogeneous materials: A quadtree based scaled boundary finite element method
    He, Yiqian
    Guo, Jie
    Yang, Haitian
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 128 : 335 - 343
  • [47] Scaled boundary finite element method for various crack problems
    Shrestha, Santosh
    Ohga, Mitao
    INTERNATIONAL JOURNAL OF STEEL STRUCTURES, 2007, 7 (04) : 277 - 287
  • [48] A scaled boundary finite element formulation with bubble functions for elasto-static analyses of functionally graded materials
    Ooi, E. T.
    Song, C.
    Natarajan, S.
    COMPUTATIONAL MECHANICS, 2017, 60 (06) : 943 - 967
  • [49] A scaled boundary finite element formulation with bubble functions for elasto-static analyses of functionally graded materials
    E. T. Ooi
    C. Song
    S. Natarajan
    Computational Mechanics, 2017, 60 : 943 - 967
  • [50] Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements
    Ooi, E. T.
    Song, C.
    Tin-Loi, F.
    Yang, Z. J.
    ENGINEERING FRACTURE MECHANICS, 2012, 93 : 13 - 33