Effect of biogas slurry application on CH4 and N2O emissions, Cu and Zn uptakes by whole crop rice in a paddy field in Japan

被引:27
|
作者
Win, Aye Thida [1 ]
Toyota, Koki [1 ]
Win, Khin Thawda [1 ]
Motobayashi, Takashi [2 ]
Ookawa, Taiichiro [2 ]
Hirasawa, Tadashi [2 ]
Chen, Dingjiang [3 ]
Lu, Jun [3 ]
机构
[1] Tokyo Univ Agr & Technol, Sch Bio Applicat & Syst Engn, Tokyo 1848588, Japan
[2] Tokyo Univ Agr & Technol, Fac Agr, Tokyo 1830054, Japan
[3] Zhejiang Univ, Coll Environm Sci & Nat Resources, Hangzhou 310003, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Biogas slurry; Cu; methane; paddy field; Zn; ANAEROBICALLY DIGESTED CATTLE; LONG-TERM FERTILIZATION; SOIL ORGANIC-CARBON; NITROUS-OXIDE EMISSIONS; AMMONIA VOLATILIZATION; CHEMICAL FERTILIZER; MICROBIAL BIOMASS; METHANE EMISSIONS; SEQUESTRATION; WATER;
D O I
10.1080/00380768.2014.899886
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Effects of 4-year consecutive application of biogas slurry (BS) at rates of 0 (NF), 100 (BS100) and 300 (BS300) kg nitrogen (N) ha(-1) on yield of whole crop rice (Oryza sativa L. var. Leaf Star) and environmental impacts were investigated in a field experiment in comparison with a conventional rate of chemical fertilizer CF100 (100 kg N ha(-1)). Average biomass production was comparable between BS100 (1.9 +/- 0.1 kg dry matter m(-2)) and CF100 (1.8 +/- 0.1 kg m(-2)) and significantly (P < 0.01) highest in BS300 (2.1 +/- 0.1 kg m(-2)). Four years' average methane (CH4) emissions during the growing periods were significantly (P < 0.05) highest in BS300 (43.7 +/- 18.4 g m(-2) season(-1)), followed by BS100 (32.0 +/- 3.0 g m(-2) season(-1)) and then NF (23.5 +/- 8.2 g m(-2) season(-1)) and CF100 (20.3 +/- 3.3 g m(-2) season(-1)), indicating that BS application may cause a potential risk of CH4 emission. There were no significant differences in copper (Cu) and zinc (Zn) uptakes by the rice plant between BS100 and CF100, but significantly higher Zn content was observed in the grain of BS300 in 2011, indicating a potential risk of higher heavy metal uptake in BS300. Compared with CF100, no significant higher accumulations of extractable and total forms of Cu and Zn in soil were observed from four years of consecutive BS application. This study revealed that the application of BS, generated from pig manure, to rice fields at the conventional rate (100 kg N ha(-1)) may be considered to substitute chemical fertilizer utilization without additional environmental impacts in greenhouse gas emission and heavy metal uptake.
引用
收藏
页码:411 / 422
页数:12
相关论文
共 50 条
  • [41] Modeling CH4 and N2O emissions for continuous and noncontinuous flooding rice systems
    Liang, Hao
    Xu, Junzeng
    Hou, Huijing
    Qi, Zhiming
    Yang, Shihong
    Li, Yawei
    Hu, Kelin
    AGRICULTURAL SYSTEMS, 2022, 203
  • [42] Surface application of acidified cattle slurry compared to slurry injection: Impact on NH3, N2O, CO2 and CH4 emissions and crop uptake
    Fangueiro, David
    Pereira, Jose L. S.
    Macedo, Sofia
    Trindade, Henrique
    Vasconcelos, Ernesto
    Coutinho, Joao
    GEODERMA, 2017, 306 : 160 - 166
  • [43] Effect of two whole-crop rice (Oryza sativa L.) cultivars on methane emission and Cu and Zn uptake in a paddy field fertilized with biogas slurry
    Win, Aye Thida
    Toyota, Koki
    Ito, Daisuke
    Chikamatsu, Seiya
    Motobayashi, Takashi
    Takahashi, Natsuko
    Ookawa, Taiichiro
    Hirasawa, Tadashi
    SOIL SCIENCE AND PLANT NUTRITION, 2016, 62 (01) : 99 - 105
  • [44] Urease and nitrification inhibitors to reduce emissions of CH4 and N2O in rice production
    Xingkai Xu
    Pascal Boeckx
    Oswald Van Cleemput
    Likai Zhou
    Nutrient Cycling in Agroecosystems, 2002, 64 : 203 - 211
  • [45] Measurements of CH4 and N2O emissions from rice paddies in Fengqiu, China
    Cai, ZC
    Xing, GX
    Shen, GY
    Xu, H
    Yan, XY
    Tsuruta, H
    Yagi, K
    Minami, K
    SOIL SCIENCE AND PLANT NUTRITION, 1999, 45 (01) : 1 - 13
  • [46] Effects of Water and Fertilization Management on CH4 and N2O Emissions in Double-rice Paddy Fields in Tropical Regions
    Li J.-Q.
    Shao X.-H.
    Gou G.-L.
    Deng Y.-X.
    Tan S.-M.
    Xu W.-X.
    Yang Q.
    Liu W.-J.
    Wu Y.-Z.
    Meng L.
    Tang S.-R.
    Huanjing Kexue/Environmental Science, 2021, 42 (07): : 3458 - 3471
  • [47] Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field
    Wang, Chun
    Wang, Weiqi
    Sardans, Jordi
    An, Wanli
    Zeng, Congsheng
    Abid, Abbas Ali
    Penuelas, Josep
    ENVIRONMENTAL POLLUTION, 2018, 243 : 1196 - 1205
  • [48] Effect of biochar on CH4 and N2O emission from soils vegetated with paddy
    Singla, Ankit
    Inubushi, Kazuyuki
    PADDY AND WATER ENVIRONMENT, 2014, 12 (01) : 239 - 243
  • [49] Effect of biochar on CH4 and N2O emission from soils vegetated with paddy
    Ankit Singla
    Kazuyuki Inubushi
    Paddy and Water Environment, 2014, 12 : 239 - 243
  • [50] Does the application of biogas slurry reduce soil N2O emissions and increase crop yield?-A systematic review
    Kong, Fanjing
    Li, Qing
    Yang, Zhimin
    Chen, Yucheng
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 342