On Optimal Control Based on Parametric Gradient Approximations for Nonlinear Systems with Stochastic Parameters

被引:3
|
作者
Ito, Yuji [1 ]
Fujimoto, Kenji [2 ]
Tadokoro, Yukihiro [1 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan
[2] Kyoto Univ, Dept Aeronaut & Astronaut, Grad Sch Engn, Nishikyo Ku, Kyoto, Kyoto 6158540, Japan
关键词
D O I
10.23919/acc.2019.8815020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a design method for a suboptimal feedback controller to minimize the expectation of a cost function for uncertain nonlinear systems. The uncertainty is described by time-invariant stochastic parameters, which cause difficulties in solving the optimal control problem. The conventional notion of the principle of optimality cannot be applied to solve this problem. Furthermore, the optimal input and the expected cost cannot be described explicitly because of the nonlinearity of the system. These difficulties are overcome by combining a parametric approximation with a gradient-based optimization method. This approach enables us to obtain the gradient of an approximated cost function in an explicit form. A Monte Carlo (MC) approximation is employed to calculate the expectation of the derived gradient with respect to the stochastic parameters. This expected gradient is used to optimize the parameter of the controller.
引用
收藏
页码:2936 / 2941
页数:6
相关论文
共 50 条
  • [31] Optimal control of parameters and input functions for nonlinear systems
    Kang, Y. H.
    Lenhart, S.
    Protopopescu, V.
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (04): : 1231 - 1256
  • [32] Optimal control and identification of parameters of nonlinear dynamical systems
    Oshchepkova, N., V
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2006, (03): : 119 - 120
  • [33] Fuzzy optimal control for bilinear stochastic systems with fuzzy parameters
    Dabbous, TE
    DYNAMICS AND CONTROL, 2001, 11 (03) : 243 - 259
  • [34] Optimal Control of Linear Systems with Stochastic Parameters for Variance Suppression
    Fujimoto, Kenji
    Ota, Yuhei
    Nakayama, Makishi
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 1424 - 1429
  • [35] Adaptive stochastic gradient descent for optimal control of parabolic equations with random parameters
    Cao, Yanzhao
    Das, Somak
    Wyk, Hans-Werner
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (06) : 2104 - 2122
  • [36] Nonlinear-nonquadratic optimal and inverse optimal control for stochastic dynamical systems
    Rajpurohit, Tanmay
    Haddad, Wassim M.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2017, 27 (18) : 4723 - 4751
  • [37] Nonlinear-Nonquadratic Optimal and Inverse Optimal Control for Stochastic Dynamical Systems
    Rajpurohit, Tanmay
    Haddad, Wassim M.
    Theodorou, Evangelos A.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6568 - 6573
  • [38] Robust Control with Adjustable Parameters based on LQ Optimal Control for a Class of Uncertain Nonlinear Systems
    Oya, Hidetoshi
    2014 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2014), 2014, : 486 - 490
  • [39] A Stochastic Gradient Descent Approach for Stochastic Optimal Control
    Archibald, Richard
    Bao, Feng
    Yong, Jiongmin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 635 - 658
  • [40] An Approximations Based Approach to Optimal Control of Switched Dynamic Systems
    Azhmyakov, Vadim
    Rodriguez Serrezuela, Ruthber
    Rios Gallardo, Angela Magnolia
    Gerardo Vargas, Andwinston
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014