Cyber-Physical Systems Approach for Wide Area Control Applications

被引:0
|
作者
St Leger, Aaron [1 ]
James, John [1 ]
机构
[1] US Mil Acad, Elect Engn & Comp Sci Dept, West Point, NY 10996 USA
关键词
Cyber-Physical Systems; Communication Network Modeling; Power System Modeling; Smart Grid; Wide Area Control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a cyber-physical system approach for wide area control applications in power grids. Specifically, it is proposed to use cyber-physical system modeling methodology, to include explicit physical and behavior based models, to facilitate the application of traditional controller design and analysis to wide area control applications. Our proposed approach allows for modeling the physical elements of the power grid (e.g. transmission network, generation, loads and measurement devices), the cyber components (e.g. execution of reactive software algorithms in data processing and control software), and the concurrent and sequential interactions of cyber and physical components. The cyber-physical interactions are critical for wide area control applications due to the multiple spatial and temporal scales present in these systems. The modeling methodology is formulated into a classical closed loop controller which the plant and the controller contain cyber and physical elements. The proposed approach allows for studying the impacts of cyber-physical interactions, evaluating the effectiveness and resiliency of wide area controllers, and can be applied as a tool to benchmark and derive specifications for final designs. The methodology is applied to a phasor measurement unit based wide area control of a static VAR compensator in a MATLAB/Simulink environment.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Control and resource allocation of cyber-physical systems
    Wen, Shixi
    Guo, Ge
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (16): : 2038 - 2048
  • [32] Visualisation of Control Software for Cyber-Physical Systems
    Melatti, Igor
    Mari, Federico
    Salvo, Ivano
    Tronci, Enrico
    INFORMATION, 2021, 12 (05)
  • [33] Optimal Defense and Control for Cyber-Physical Systems
    Niu, Haifeng
    Jagannathan, S.
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 634 - 639
  • [34] Covert Attacks in Cyber-Physical Control Systems
    de Sa, Alan Oliveira
    Rust da Costa Carmo, Luiz F.
    Machado, Raphael C. S.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (04) : 1641 - 1651
  • [35] Resilience of cyber-physical manufacturing control systems
    Moghaddam, Mohsen
    Deshmukh, Abhijit
    MANUFACTURING LETTERS, 2019, 20 : 40 - 44
  • [36] Learning Tracking Control for Cyber-Physical Systems
    Wu, Chengwei
    Pan, Wei
    Sun, Guanghui
    Liu, Jianxing
    Wu, Ligang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (11) : 9151 - 9163
  • [37] Control Protocols Design for Cyber-Physical Systems
    Cai, Yi
    Qi, Deyu
    2015 IEEE ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2015, : 668 - 671
  • [38] Hypergames and Cyber-Physical Security for Control Systems
    Bakker, Craig
    Bhattacharya, Arnab
    Chatterjee, Samrat
    Vrabie, Draguna L.
    ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2020, 4 (04)
  • [39] Congestion Control in Molecular Cyber-Physical Systems
    Felicetti, Luca
    Femminella, Mauro
    Reali, Gianluca
    IEEE ACCESS, 2017, 5 : 10000 - 10011
  • [40] Optimization and Control of Cyber-Physical Vehicle Systems
    Bradley, Justin M.
    Atkins, Ella M.
    SENSORS, 2015, 15 (09) : 23020 - 23049