Robust State Estimation of Fractional-order Complex Networks with Parametric Uncertainties

被引:0
|
作者
Chen Aimin [1 ,2 ]
Wang Xingwang [3 ]
Wang Junwei [4 ]
Liu Zhiguang [1 ,2 ]
Zhang Fengpan [1 ,2 ]
机构
[1] Henan Univ, Inst Appl Math, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Math & Informat Sci, Kaifeng 475004, Peoples R China
[3] Henan Univ, Construct Dept BASIC, Kaifeng 475004, Peoples R China
[4] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
State Estimation; Fractional-order Derivative; Complex Networks; Parametric Uncertainty; Scalar Signals; SYNCHRONIZATION; SYSTEMS; CHAOS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the robust state estimation problem of a class of uncertain fractional-order complex networks with norm-bounded parameter uncertainties. Through available scalar output signals, our aim is to design a state estimator to estimate the network states such that the estimation error is globally robustly asymptotically stable for all admissible parameter uncertainties. Based on the stability theory of fractional-order differential systems, a sufficient condition for the existence of the desired estimator gain is derived, and then the explicit expression of such estimator gain is characterized in terms of the solution to linear matrix inequalities. Finally, simulation examples are provided to show the effectiveness of the designed estimator.
引用
收藏
页码:396 / 401
页数:6
相关论文
共 50 条
  • [21] Asymptotic Synchronization of Fractional-Order Complex Dynamical Networks with Different Structures and Parameter Uncertainties
    He, Xiliang
    Li, Tianzeng
    Liu, Dehui
    FRACTAL AND FRACTIONAL, 2022, 6 (08)
  • [22] A Robust State Estimation for Fractional-Order Liouvillian Systems: with Application to Secure Communications
    Delfin-Prieto, Sergio M.
    Martinez-Guerra, Rafael
    Trejo-Zuniga, Ivan
    Montesinos-Garcia, Juan J.
    IFAC PAPERSONLINE, 2018, 51 (33): : 97 - 102
  • [23] Robust projective outer synchronization of coupled uncertain fractional-order complex networks
    Wang, Junwei
    Zhang, Yun
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 813 - 823
  • [24] Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties
    Shuxin Liu
    Yongguang Yu
    Shuo Zhang
    Neural Computing and Applications, 2019, 31 : 3533 - 3542
  • [25] New Results on Robust Finite-Time Passivity for Fractional-Order Neural Networks with Uncertainties
    Mai Viet Thuan
    Dinh Cong Huong
    Duong Thi Hong
    Neural Processing Letters, 2019, 50 : 1065 - 1078
  • [26] Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties
    Liu, Shuxin
    Yu, Yongguang
    Zhang, Shuo
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (08): : 3533 - 3542
  • [27] New Results on Robust Finite-Time Passivity for Fractional-Order Neural Networks with Uncertainties
    Mai Viet Thuan
    Dinh Cong Huong
    Duong Thi Hong
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1065 - 1078
  • [28] Controllability of fractional-order directed complex networks
    Zhang, Hao
    Chen, Di-Yi
    Xu, Bei-Bei
    Zhang, Run-Fan
    MODERN PHYSICS LETTERS B, 2014, 28 (27):
  • [29] Passivity of fractional-order coupled neural networks with interval uncertainties
    Qiu, Hongling
    Cao, Jinde
    Liu, Heng
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 205 : 845 - 860
  • [30] Synchronization of fractional-order linear complex networks
    Wang, Junwei
    Zeng, Caibin
    ISA TRANSACTIONS, 2015, 55 : 129 - 134