Dynamic programming for multidimensional stochastic control problems

被引:10
|
作者
Ma, J [1 ]
Yong, J
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Fudan Univ, Dept Math, Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Inst Math Finance, Shanghai 200433, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
stochastic control; dynamic programming; viscosity solutions; singular control; impulse control;
D O I
10.1007/s10114-999-0081-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a general multidimensional diffusion-type stochastic control problem. Our model contains the usual regular control problem, singular control problem and impulse control problem as special cases. Using a unified treatment of dynamic programming, we show that the value function of the problem is a viscosity solution of certain Hamilton-Jacobi-Bellman (HJB) quasivariational inequality. The uniqueness of such a quasi-variational inequality is proved.
引用
收藏
页码:485 / 506
页数:22
相关论文
共 50 条