State-of-charge estimation of lithium-ion batteries using composite multi-dimensional features and a neural network

被引:21
|
作者
Li, Jianhua [1 ,2 ,3 ]
Liu, Mingsheng [1 ,2 ,4 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin, Peoples R China
[2] Hebei Univ Technol, Key Lab Electromagnet Field & Elect Apparat Relia, Tianjin, Peoples R China
[3] Shijiazhuang TieDao Univ, Sch Informat Sci & Technol, Shijiazhuang, Hebei, Peoples R China
[4] Shijiazhuang Inst Railway Technol, Shijiazhuang, Hebei, Peoples R China
关键词
time series; secondary cells; neural nets; battery powered vehicles; least squares approximations; dynamometers; battery management systems; feed-forward neural network; time-series neural network; single-dimensional feature data; time series neural network; traditional estimation methods; state-of-charge estimation; lithium-ion batteries; multidimensional features data; battery; terminal voltage; low-dimensional feature data; open-circuit voltage; high-dimensional feature data; OCV-SOC method; OPEN-CIRCUIT VOLTAGE; HEALTH ESTIMATION; MODEL;
D O I
10.1049/iet-pel.2018.6144
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method that uses composite multi-dimensional features data to estimate the state of charge (SOC) of a battery is presented to address the shortcomings of using single-dimensional feature data. Two types of data, the terminal voltage and the terminal current, which can be obtained directly by measuring, are selected as low-dimensional feature data. The open-circuit voltage (OCV), as high-dimensional feature data, cannot be directly measured, and can be used to estimate the SOC by the OCV-SOC method. Thus, in this study, the second-order RC equivalent model of a battery is used and the OCV is identified online by the forgetting factor recursive least-squares algorithm. The proposed method is implemented by first using a feed-forward neural network, followed by a time-series neural network. The dynamic stress test and urban dynamometer driving schedule discharging profiles are applied to train and test the two neural networks. The experimental results show that the proposed method can estimate the SOC more accurately than neural networks using only single-dimensional feature data. Moreover, the time series neural network can overcome the shortcomings of traditional estimation methods.
引用
收藏
页码:1470 / 1478
页数:9
相关论文
共 50 条
  • [41] State-of-Charge Estimation for Lithium-Ion Batteries Based on a Nonlinear Fractional Model
    Wang, Baojin
    Liu, Zhiyuan
    Li, Shengbo Eben
    Moura, Scott Jason
    Peng, Huei
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (01) : 3 - 11
  • [42] Fuzzy Model for Estimation of the State-of-Charge of Lithium-Ion Batteries for Electric Vehicles
    胡晓松
    孙逢春
    程夕明
    JournalofBeijingInstituteofTechnology, 2010, 19 (04) : 416 - 421
  • [43] Composite Titanate-Graphite Negative Electrode for Improved State-of-Charge Estimation of Lithium-Ion Batteries
    Wang, J.
    Verbrugge, M. W.
    Liu, P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (02) : A185 - A189
  • [44] State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization
    Yu, Zhihao
    Huai, Ruituo
    Xiao, Linjing
    ENERGIES, 2015, 8 (08): : 7854 - 7873
  • [45] State of Charge Estimation for Lithium-Ion Batteries Based on NARX Neural Network and UKF
    Qin, Xiaohan
    Gao, Mingyu
    He, Zhiwei
    Liu, Yuanyuan
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1706 - 1711
  • [46] State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter
    Chen, Cheng
    Xiong, Rui
    Yang, Ruixin
    Shen, Weixiang
    Sun, Fengchun
    JOURNAL OF CLEANER PRODUCTION, 2019, 234 : 1153 - 1164
  • [47] State-of-Charge Estimation of the Lithium-Ion Battery Using Neural Network Based on an Improved Thevenin Circuit Model
    Zhang, Haoliang
    Na, Woonki
    Kim, Jonghoon
    2018 IEEE TRANSPORTATION AND ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2018, : 342 - 346
  • [48] State-of-charge estimation approach of lithium-ion batteries using an improved extended Kalman filter
    Yu, Xiaowei
    Wei, Jingwen
    Dong, Guangzhong
    Chen, Zonghai
    Zhang, Chenbin
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5097 - 5102
  • [49] State of charge estimation of lithium-ion batteries using local model network
    Zhang Z.
    Ma S.
    Jiang X.
    Chen J.
    Ma X.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (07): : 161 - 171
  • [50] State-of-Charge Estimation of Lithium-Ion Batteries Using Machine Learning Based on Augmented Data
    Pohlmann, Sebastian
    Karnehm, Dominic
    Mashayekh, Ali
    Kuder, Manuel
    Gieraths, Antje
    Weyh, Thomas
    2022 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST, 2022,