A Deep Learning-Based Approach for the Detection of Early Signs of Gingivitis in Orthodontic Patients Using Faster Region-Based Convolutional Neural Networks

被引:36
|
作者
Alalharith, Dima M. [1 ]
Alharthi, Hajar M. [1 ]
Alghamdi, Wejdan M. [1 ]
Alsenbel, Yasmine M. [1 ]
Aslam, Nida [1 ]
Khan, Irfan Ullah [1 ]
Shahin, Suliman Y. [2 ]
Dianiskova, Simona [3 ]
Alhareky, Muhanad S. [4 ]
Barouch, Kasumi K. [5 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Dept Comp Sci, Coll Comp Sci & Informat Technol, Dammam 31441, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Div Orthodont, Dept Prevent Dent Sci, Coll Dent, Dammam 31441, Saudi Arabia
[3] Slovak Med Univ, Dept Orthodont, Bratislava 83303, Slovakia
[4] Imam Abdulrahman Bin Faisal Univ, Div Pediat Dent, Dept Prevent Dent Sci, Coll Dent, Dammam 31441, Saudi Arabia
[5] Imam Abdulrahman Bin Faisal Univ, Div Periodontol, Dept Prevent Dent Sci, Coll Dent, Dammam 31441, Saudi Arabia
关键词
gingivitis; periodontal disease; deep learning; convolutional neural networks; DIAGNOSIS;
D O I
10.3390/ijerph17228447
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Computer-based technologies play a central role in the dentistry field, as they present many methods for diagnosing and detecting various diseases, such as periodontitis. The current study aimed to develop and evaluate the state-of-the-art object detection and recognition techniques and deep learning algorithms for the automatic detection of periodontal disease in orthodontic patients using intraoral images. In this study, a total of 134 intraoral images were divided into a training dataset (n = 107 [80%]) and a test dataset (n = 27 [20%]). Two Faster Region-based Convolutional Neural Network (R-CNN) models using ResNet-50 Convolutional Neural Network (CNN) were developed. The first model detects the teeth to locate the region of interest (ROI), while the second model detects gingival inflammation. The detection accuracy, precision, recall, and mean average precision (mAP) were calculated to verify the significance of the proposed model. The teeth detection model achieved an accuracy, precision, recall, and mAP of 100 %, 100%, 51.85%, and 100%, respectively. The inflammation detection model achieved an accuracy, precision, recall, and mAP of 77.12%, 88.02%, 41.75%, and 68.19%, respectively. This study proved the viability of deep learning models for the detection and diagnosis of gingivitis in intraoral images. Hence, this highlights its potential usability in the field of dentistry and aiding in reducing the severity of periodontal disease globally through preemptive non-invasive diagnosis.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] Tattoo Detection and Localization using Region-based Deep Learning
    Sun, Zhaohui H.
    Baumes, Jeff
    Tunison, Paul
    Turek, Matt
    Hoogs, Anthony
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3055 - 3060
  • [42] Malware detection approach based on deep convolutional neural networks
    El Merabet, Hoda
    Hajraoui, Abderrahmane
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 20 (1-2) : 145 - 157
  • [43] Automated liver tumor detection in abdominal ultrasonography with a modified faster region-based convolutional neural networks (Faster R-CNN) architecture
    Karako, Kenji
    Mihara, Yuichiro
    Arita, Junichi
    Ichida, Akihiko
    Bae, Sung Kwan
    Kawaguchi, Yoshiki
    Ishizawa, Takeaki
    Akamatsu, Nobuhisa
    Kaneko, Junichi
    Hasegawa, Kiyoshi
    Chen, Yu
    HEPATOBILIARY SURGERY AND NUTRITION, 2021,
  • [44] A Transfer Learning-Based System of Pothole Detection in Roads through Deep Convolutional Neural Networks
    Manalo, Jhon Michael C.
    Alon, Alvin Sarraga
    Austria, Yolanda D.
    Merencilla, Nino E.
    Misola, Maribel A.
    Sandil, Ricky C.
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1469 - 1473
  • [45] A Fluorescent Biosensor for Sensitive Detection of Salmonella Typhimurium Using Low-Gradient Magnetic Field and Deep Learning via Faster Region-Based Convolutional Neural Network
    Hu, Qiwei
    Wang, Siyuan
    Duan, Hong
    Liu, Yuanjie
    BIOSENSORS-BASEL, 2021, 11 (11):
  • [46] Full Wafer Process Control Through Object Detection Using Region-Based Convolutional Neural Networks
    Alcaire, Thomas
    Le Cunff, Delphine
    Tortai, Jean-Herve
    Soulan, Sebastien
    Brouzet, Virginie
    Duru, Romain
    Euvrard, Christophe
    2022 33RD ANNUAL SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE (ASMC), 2022,
  • [47] Region-based Convolutional Neural Networks for Profiled Fiber Recognition
    Chen, Zhao
    Wang, Xinxin
    Zheng, Yuxin
    Wan, Yan
    2018 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2018, : 440 - 444
  • [48] A Development of Robotic Scrub Nurse System - Detection for Surgical Instruments Using Faster Region-Based Convolutional Neural Network -
    Nakano, Akito
    Nagamune, Kouki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2022, 26 (01) : 74 - 82
  • [49] Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network
    Fan, Ming
    Li, Yuanzhe
    Zheng, Shuo
    Peng, Weijun
    Tang, Wei
    Li, Lihua
    METHODS, 2019, 166 : 103 - 111
  • [50] Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks
    Jin, Amy
    Yeung, Serena
    Jopling, Jeffrey
    Krause, Jonathan
    Azagury, Dan
    Milstein, Arnold
    Li Fei-Fei
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 691 - 699