Hierarchical unsupervised fuzzy clustering

被引:42
|
作者
Geva, AB [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
cluster validity; hierarchical clustering; hybrid systems; pattern recognition; projection pursuit; recursive feature extraction; unsupervised fuzzy clustering;
D O I
10.1109/91.811242
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new recursive algorithm for hierarchical fuzzy partitioning is presented. The algorithm has the advantages of hierarchical clustering, while maintaining fuzzy clustering rules. Each pattern can have a nonzero membership in more than one subset of the data in the hierarchy. Optimal feature extraction and reduction is optionally reapplied for each subset. Combining hierarchical and fuzzy concepts is suggested as a natural feasible solution to the cluster validity problem of real data. The convergence and membership conservation of the algorithm are proven. The algorithm is shown to be effective for a variety of data sets with a wide dynamic range of both covariance matrices and number of members in each class.
引用
收藏
页码:723 / 733
页数:11
相关论文
共 50 条
  • [41] An Approach to Fuzzy Hierarchical Clustering of Short Text Fragments Based on Fuzzy Graph Clustering
    Dudarin, Pavel V.
    Yarushkina, Nadezhda G.
    PROCEEDINGS OF THE SECOND INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'17), VOL 1, 2018, 679 : 295 - 304
  • [42] Unsupervised fuzzy clustering with multi-center clusters
    Tao, CW
    FUZZY SETS AND SYSTEMS, 2002, 128 (03) : 305 - 322
  • [43] Unsupervised multilayer fuzzy neural networks for image clustering
    Wang, Yifan
    Ishibuchi, Hisao
    Er, Meng Joo
    Zhu, Jihua
    INFORMATION SCIENCES, 2023, 622 : 682 - 709
  • [44] Unsupervised fuzzy model-based Gaussian clustering
    Yang, Miin-Shen
    Chang-Chien, Shou-Jen
    Nataliani, Yessica
    INFORMATION SCIENCES, 2019, 481 : 1 - 23
  • [45] An Unsupervised Fuzzy Clustering Method for Twitter Sentiment Analysis
    Suresh, Hima
    Raj, Gladston S.
    2016 INTERNATIONAL CONFERENCE ON COMPUTATION SYSTEM AND INFORMATION TECHNOLOGY FOR SUSTAINABLE SOLUTIONS (CSITSS), 2016, : 80 - 85
  • [46] Unsupervised image segmentation using a hierarchical clustering selection process
    Martinez-Uso, Adolfo
    Pla, Filiberto
    Garcia-Sevilla, Pedro
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2006, 4109 : 799 - 807
  • [47] Hierarchical clustering approach for unsupervised image classification of hyperspectral data
    Lee, S
    Crawford, MM
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 941 - 944
  • [48] Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation
    Sarfraz, M. Saquib
    Murray, Naila
    Sharma, Vivek
    Diba, Ali
    van Gool, Luc
    Stiefelhagen, Rainer
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 11220 - 11229
  • [49] UNSUPERVISED GROUPING OF MOVING OBJECTS BASED ON AGGLOMERATIVE HIERARCHICAL CLUSTERING
    Fujinami, Kaori
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2016, 9 (04): : 2276 - 2296
  • [50] Unsupervised Hierarchical Semantic Segmentation with Multiview Cosegmentation and Clustering Transformers
    Ke, Tsung-Wei
    Hwang, Jyh-Jing
    Guo, Yunhui
    Wang, Xudong
    Yu, Stella X.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2561 - 2571