Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress

被引:39
|
作者
Elsawy, Hayam I. A. [1 ,3 ]
Mekawy, Ahmad Mohammad M. [1 ,2 ]
Elhity, Mahmoud A. [4 ]
Abdel-dayem, Sherif M. [4 ]
Abdelaziz, Maha Nagy [6 ]
Assaha, Dekoum V. M. [5 ]
Ueda, Akihiro [1 ]
Saneoka, Hirofumi [1 ]
机构
[1] Hiroshima Univ, Grad Sch Biosphere Sci, Higashihiroshima 7398528, Japan
[2] Menia Univ, Fac Sci, Dept Bot & Microbiol, El Minia 61519, Egypt
[3] Agr Res Ctr, Field Crops Res Inst, Kafrelsheikh, Egypt
[4] Kafrelsheikh Univ, Fac Agr, Kafrelsheikh, Egypt
[5] Sultan Qaboos Univ, Coll Sci, Dept Biol, Muscat, Oman
[6] Hiroshima Univ, Grad Sch Int Dev & Cooperat, Higashihiroshima 7398529, Japan
关键词
Antioxidant enzymes; Barley; Na+ sequestration; Oxidative stress; Salt tolerance; HUCKLEBERRY SOLANUM-SCABRUM; VACUOLAR NA+/H+-ANTIPORTER; LIPID-PEROXIDATION; H+-ATPASE; ANTIOXIDATIVE ENZYMES; SUPEROXIDE-DISMUTASE; OXIDATIVE STRESS; PROLINE CONTENT; RICE CULTIVARS; TOLERANCE;
D O I
10.1016/j.plaphy.2018.04.012
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Although barley (Hordeum vulgare L.) is considered a salt tolerant crop species, productivity of barley is affected differently by ionic, osmotic, and oxidative stresses resulting from a salty rhizosphere. The current study was conducted to elucidate the mechanism of salt tolerance in two barley cultivars, Giza128 and Giza126. The two cultivars were exposed to 200 mM NaCl hydroponically for 12 days. Although both cultivars accumulated a large amount of Na+ in their leaves with similar concentrations, the growth of Giza128 was much better than that of Giza126, as measured by maintaining a higher dry weight, relative growth rate, leaf area, and plant height. To ascertain the underlying mechanisms of this differential tolerance, first, the relative expression patterns of the genes encoding Na+/H+ antiporters (NHX) and the associated proton pumps (V-PPase and V-ATPase) as well as the gene encoding the plasma membrane PM H+-ATPase were analyzed in leaf tissues. Salt stress induced higher HvNHX1 expression in Giza128 (3.3-fold) than in Giza126 (1.9-fold), whereas the expression of the other two genes, HvNHX2 and HvNHX3, showed no induction in either cultivar. The expression of HvHVP1 and HvHVA was higher in Giza128 (3.8- and 2.1-fold, respectively) than in Giza126 (1.6- and 1.1-fold, respectively). The expression of the PM H+-ATPase (ha1) gene was induced more in Giza128 (8.8-fold) than in Giza126 (1.8-fold). Second, the capacity for ROS detoxification was assessed using the oxidative stress biomarkers electrolyte leakage ratio (ELR) and the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and these parameters sharply increased in Giza126 leaves by 66.5%, 42.8% and 50.0%, respectively, compared with those in Giza128 leaves. The antioxidant enzyme (CAT, APX, sPOD, GR, and SOD) activities were significantly elevated by salt treatment in Giza128 leaves, whereas in Giza126, these activities were not significantly altered. Overall, the results indicate that the superior salt tolerance of Giza128 is primarily the result of the ability to counter Na+-induced oxidative stress by increasing antioxidant enzyme levels and possibly by increasing vacuolar Na+ sequestration and prevention of cellular K+ leakage.
引用
收藏
页码:425 / 435
页数:11
相关论文
共 50 条
  • [31] Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.)
    Zhao, ZQ
    Ma, JF
    Sato, K
    Takeda, K
    PLANTA, 2003, 217 (05) : 794 - 800
  • [32] Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.)
    Zhuqing Zhao
    Jian Feng Ma
    Kazuhiro Sato
    Kazuyoshi Takeda
    Planta, 2003, 217 : 794 - 800
  • [33] Responses of Barley (Hordeum vulgare L.) Genotypes to Salinity Stress Under Controlled and Field Conditions
    Bahrani, Hamzeh Abbasipour
    Ghazvini, Habibollah
    Amiri, Bahram
    Bazrafshan, Foroud
    Nikkhah, Hamidreza
    GESUNDE PFLANZEN, 2023, 75 (03): : 499 - 513
  • [34] Antioxidant responses of barley (Hordeum vulgare L.) genotypes to lead toxicity
    Ali Doğru
    Biologia, 2020, 75 : 1265 - 1272
  • [35] Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content
    Guo, Baojian
    Luan, Haiye
    Lin, Shen
    Lv, Chao
    Zhang, Xinzhong
    Xu, Rugen
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [36] Antioxidant responses of barley (Hordeum vulgare L.) genotypes to lead toxicity
    Dogru, Ali
    BIOLOGIA, 2020, 75 (09) : 1265 - 1272
  • [37] SALT STRESS DISTURBS THE CALCIUM NUTRITION OF BARLEY (HORDEUM-VULGARE-L)
    LYNCH, J
    LAUCHLI, A
    NEW PHYTOLOGIST, 1985, 99 (03) : 345 - 354
  • [38] Physiological and Molecular Responses to Controlled Severe Drought in Two Barley (Hordeum Vulgare L.) Genotypes
    Harb, Amal M.
    Samarah, Nezar H.
    JOURNAL OF CROP IMPROVEMENT, 2015, 29 (01) : 82 - 94
  • [39] Expression analysis of barley (Hordeum vulgare L.) during salinity stress
    Walia H.
    Wilson C.
    Wahid A.
    Condamine P.
    Cui X.
    Close T.J.
    Functional & Integrative Genomics, 2006, 6 (2) : 143 - 156
  • [40] Genetic Variation and Alleviation of Salinity Stress in Barley (Hordeum vulgare L.)
    El-Esawi, Mohamed A.
    Alaraidh, Ibrahim A.
    Alsahli, Abdulaziz A.
    Ali, Hayssam M.
    Alayafi, Aisha A.
    Witczak, Jacques
    Ahmad, Margaret
    MOLECULES, 2018, 23 (10):