Machine learning methods to predict unmeasured confounders in claims data: A real-world application

被引:0
|
作者
Albogami, Yasser [1 ,2 ]
Daniels, Michael J. [3 ]
Wei, Yu-Jung [1 ]
Cusi, Kenneth [4 ]
Winterstein, Almut G. [1 ]
机构
[1] Univ Florida, Dept Pharmaceut Outcomes & Policy, Gainesville, FL USA
[2] King Saud Univ, Clin Pharm Dept, Riyadh, Saudi Arabia
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[4] Univ Florida, Coll Med, Gainesville, FL USA
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
5060
引用
收藏
页码:413 / 414
页数:2
相关论文
共 50 条
  • [31] Machine learning algorithms to predict intraoperative hemorrhage in surgical patients: a modeling study of real-world data in Shanghai, China
    Ying Shi
    Guangming Zhang
    Chiye Ma
    Jiading Xu
    Kejia Xu
    Wenyi Zhang
    Jianren Wu
    Liling Xu
    BMC Medical Informatics and Decision Making, 23
  • [32] Machine- Learning Models Based on Real-World Data to Predict Rehospitalization or Death After Acute Myocardial Infarction
    Seegan, George
    O'Kelly, James
    Kalich, Bethany
    Shahabi, Ahva
    CIRCULATION, 2022, 146
  • [33] A study of real-world micrograph data quality and machine learning model robustness
    Zhong, Xiaoting
    Gallagher, Brian
    Eves, Keenan
    Robertson, Emily
    Mundhenk, T. Nathan
    Han, T. Yong-Jin
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [34] A study of real-world micrograph data quality and machine learning model robustness
    Xiaoting Zhong
    Brian Gallagher
    Keenan Eves
    Emily Robertson
    T. Nathan Mundhenk
    T. Yong-Jin Han
    npj Computational Materials, 7
  • [35] IMPROVING EFFICIENCY IN ANALYSIS OF REAL-WORLD DATA WITH AN AUTOMATED MACHINE LEARNING TOOL
    Zhang, Y.
    Lo-Ciganic, W. H.
    Xie, H.
    Iyer, R.
    Snyder, D.
    Lineman, P.
    Tian, M. Y.
    VALUE IN HEALTH, 2024, 27 (06) : S271 - S271
  • [36] HOW TO MEASURE 'OPIOID RELAPSE' IN REAL-WORLD CLAIMS DATA
    Montejano, L. B.
    Ronquest, N. A.
    Willson, T. M.
    Wollschlaeger, B. A.
    Cole, A. L.
    Nadipelli, V. R.
    VALUE IN HEALTH, 2016, 19 (03) : A72 - A72
  • [37] Zostavax vaccine effectiveness among US elderly using real-world evidence: Addressing unmeasured confounders by using multiple imputation after linking beneficiary surveys with Medicare claims
    Izurieta, Hector S.
    Wu, Xiyuan
    Lu, Yun
    Chillarige, Yoganand
    Wernecke, Michael
    Lindaas, Arnstein
    Pratt, Douglas
    MaCurdy, Thomas E.
    Chu, Steve
    Kelman, Jeffrey
    Forshee, Richard
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2019, 28 (07) : 993 - 1001
  • [38] PREDICTIVE MODELS LEVERAGING MACHINE LEARNING AND REAL-WORLD DATA FOR EARLY DIAGNOSIS: AN APPLICATION IN AMYOTROPHIC LATERAL SCLEROSIS
    Nathan, R.
    Miller, C.
    Shukla, O.
    Garbayo, A.
    Hagan, M.
    Harrison, A.
    Ciepielewska, M.
    Apple, S.
    VALUE IN HEALTH, 2021, 24 : S169 - S169
  • [39] Machine Learning Methods for Disease Prediction with Claims Data
    Christensen, Tanner
    Frandsen, Abraham
    Glazier, Seth
    Humpherys, Jeffrey
    Kartchner, David
    2018 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2018, : 467 - 471
  • [40] How Well Can Machine Learning Predict Late Seizures after Intracerebral Hemorrhages? Evidence from Real-World Data
    Lekoubou, Alain
    Petucci, Justin
    Katoch, Avinsh
    Honavar, Vasant
    ANNALS OF NEUROLOGY, 2023, 94 : S128 - S128