Machine learning methods to predict unmeasured confounders in claims data: A real-world application

被引:0
|
作者
Albogami, Yasser [1 ,2 ]
Daniels, Michael J. [3 ]
Wei, Yu-Jung [1 ]
Cusi, Kenneth [4 ]
Winterstein, Almut G. [1 ]
机构
[1] Univ Florida, Dept Pharmaceut Outcomes & Policy, Gainesville, FL USA
[2] King Saud Univ, Clin Pharm Dept, Riyadh, Saudi Arabia
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[4] Univ Florida, Coll Med, Gainesville, FL USA
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
5060
引用
收藏
页码:413 / 414
页数:2
相关论文
共 50 条
  • [1] Real-World Data and Machine Learning to Predict Cardiac Amyloidosis
    Garcia-Garcia, Elena
    Maria Gonzalez-Romero, Gracia
    Martin-Perez, Encarna M.
    Zapata Cornejo, Enrique de Dios
    Escobar-Aguilar, Gema
    Cardenas Bonnet, Marlon Felix
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (03) : 1 - 15
  • [2] Assessing the impact of unmeasured confounders for credible and reliable real-world evidence
    Zhang, Xiang
    Stamey, James D.
    Mathur, Maya B.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 (10) : 1219 - 1227
  • [3] Using machine learning on real-world data to predict metastatic status.
    Green, Foad H.
    Huang, Hu T.
    Lerman, Michelle
    Tran, Mary
    Subramanian, Vinod
    Loving, Joshua
    Rioth, Matthew J.
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [4] Machine Learning and Real-World Data to Predict Lung Cancer Risk in Routine Care
    Chandran, Urmila
    Reps, Jenna
    Yang, Robert
    Vachani, Anil
    Maldonado, Fabien
    Kalsekar, Iftekhar
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2023, 32 (03) : 337 - 343
  • [5] Towards Machine Learning with Zero Real-World Data
    Kang, Cholmin
    Jung, Hyunwoo
    Lee, Youngki
    WEARSYS'19: PROCEEDINGS OF THE 5TH ACM WORKSHOP ON WEARABLE SYSTEMS AND APPLICATIONS, 2019, : 41 - 46
  • [6] Leveraging Machine Learning and Real-world Data to Predict Chronic Obstructive Pulmonary Disease Exacerbations
    Panettieri, R. A.
    Roy, J.
    Uczkowski, N. Gontarczyk
    Tyler, A.
    Attanucci, J.
    O'Riordan, T.
    Wrobleski, K.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [7] Adjusting for unmeasured confounders in pharmacoepidemiologic claims data using external information
    Schneeweiss, S
    Glynn, RJ
    Tsai, EH
    Avorn, J
    Solomon, DH
    EPIDEMIOLOGY, 2005, 16 (01) : 17 - 24
  • [8] Machine Learning Methods in Real-World Studies of Cardiovascular Disease
    Zhou, Jiawei
    You, Dongfang
    Bai, Jianling
    Chen, Xin
    Wu, Yaqian
    Wang, Zhongtian
    Tang, Yingdan
    Zhao, Yang
    Feng, Guoshuang
    CARDIOVASCULAR INNOVATIONS AND APPLICATIONS, 2022, 7 (01)
  • [9] Machine Learning for Emergency Service Optimization: A Real-World Application
    Zhong, Junyi
    Abreu, Thiago
    Heidet, Mathieu
    Lucas, Francoise S.
    Souihi, Sami
    2024 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE 2024, 2024, : 387 - 391
  • [10] Real-World Evidence: Integrating Machine Learning with Real-World Big Data for Predictive Analytics in Healthcare
    Vecchio, Nicolas
    CARDIOLOGY, 2024,