The Minkowski's inequality by means of a generalized fractional integral

被引:18
|
作者
Sousa, J. Vanterler da C. [1 ]
Capelas de Oliveira, E. [1 ]
机构
[1] Univ Estadual Campinas, Imecc, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
来源
AIMS MATHEMATICS | 2018年 / 3卷 / 01期
关键词
Minkowski's inequality; generalized fractional integral; HARMONICALLY CONVEX-FUNCTIONS; HERMITE-HADAMARD INEQUALITY; EXTENSIONS;
D O I
10.3934/Math.2018.1.131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the definition of a fractional integral, recently proposed by Katugampola, to establish a generalization of the reverse Minkowski's inequality. We show two new theorems associated with this inequality, as well as state and show other inequalities related to this fractional operator.
引用
收藏
页码:131 / 147
页数:17
相关论文
共 50 条
  • [1] The Minkowski inequality involving generalized k-fractional conformable integral
    Mubeen, Shahid
    Habib, Siddra
    Naeem, Muhammad Nawaz
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [2] The Minkowski inequality involving generalized k-fractional conformable integral
    Shahid Mubeen
    Siddra Habib
    Muhammad Nawaz Naeem
    Journal of Inequalities and Applications, 2019
  • [3] GENERALIZED INTEGRAL MERCER'S INEQUALITY AND INTEGRAL MEANS
    Ali, M. Maqsood
    Khan, Asif R.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01): : 60 - 76
  • [4] Minkowski’s inequality for the AB-fractional integral operator
    Hasib Khan
    Thabet Abdeljawad
    Cemil Tunç
    Abdulwasea Alkhazzan
    Aziz Khan
    Journal of Inequalities and Applications, 2019
  • [5] Minkowski's inequality for the AB-fractional integral operator
    Khan, Hasib
    Abdeljawad, Thabet
    Tunc, Cemil
    Alkhazzan, Abdulwasea
    Khan, Aziz
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [6] A (*, *)-Based Minkowski’s Inequality for Sugeno Fractional Integral of Order α > 0
    Azizollah Babakhani
    Hamzeh Agahi
    Radko Mesiar
    Fractional Calculus and Applied Analysis, 2015, 18 : 862 - 874
  • [7] Generalized proportional fractional integral functional bounds in Minkowski's inequalities
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    Shatanawi, Wasfi
    Abdo, Mohammed S.
    Abodayeh, Kamaleldin
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [8] Generalized proportional fractional integral functional bounds in Minkowski’s inequalities
    Tariq A. Aljaaidi
    Deepak B. Pachpatte
    Wasfi Shatanawi
    Mohammed S. Abdo
    Kamaleldin Abodayeh
    Advances in Difference Equations, 2021
  • [9] A (☆, *)-BASED MINKOWSKI'S INEQUALITY FOR SUGENO FRACTIONAL INTEGRAL OF ORDER α > 0
    Babakhani, Azizollah
    Agahi, Hamzeh
    Mesiar, Radko
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (04) : 862 - 874
  • [10] ON THE REVERSE MINKOWSKI'S INTEGRAL INEQUALITY
    BENAISSA, B. O. U. H. A. R. K. E. T.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2022, 46 (03): : 407 - 416