Generalized proportional fractional integral functional bounds in Minkowski's inequalities

被引:8
|
作者
Aljaaidi, Tariq A. [1 ]
Pachpatte, Deepak B. [1 ]
Shatanawi, Wasfi [2 ,3 ,4 ]
Abdo, Mohammed S. [5 ]
Abodayeh, Kamaleldin [2 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad, MS, India
[2] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Hashemite Univ, Dept Math, Zarqa, Jordan
[5] Hodeidah Univ, Dept Math, Al Hodeidah, Yemen
关键词
Minkowski inequalities; Fractional inequalities; psi-proportional fractional operators; GRUSS-TYPE INEQUALITIES;
D O I
10.1186/s13662-021-03582-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research paper, we improve some fractional integral inequalities of Minkowski-type. Precisely, we use a proportional fractional integral operator with respect to another strictly increasing continuous function psi. The functions used in this work are bounded by two positive functions to get reverse Minkowski inequalities in a new sense. Moreover, we introduce new fractional integral inequalities which have a close relationship to the reverse Minkowski-type inequalities via psi-proportional fractional integral, then with the help of this fractional integral operator, we discuss some new special cases of reverse Minkowski-type inequalities through this work. An open issue is covered in the conclusion section to extend the current findings to be more general.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Generalized proportional fractional integral functional bounds in Minkowski’s inequalities
    Tariq A. Aljaaidi
    Deepak B. Pachpatte
    Wasfi Shatanawi
    Mohammed S. Abdo
    Kamaleldin Abodayeh
    Advances in Difference Equations, 2021
  • [2] The Minkowski inequalities via generalized proportional fractional integral operators
    Rahman, Gauhar
    Khan, Aftab
    Abdeljawad, Thabet
    Nisar, Kottakkaran Sooppy
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [3] The Minkowski inequalities via generalized proportional fractional integral operators
    Gauhar Rahman
    Aftab Khan
    Thabet Abdeljawad
    Kottakkaran Sooppy Nisar
    Advances in Difference Equations, 2019
  • [4] Minkowski-Type Inequalities Using Generalized Proportional Hadamard Fractional Integral Operators
    Nale, Asha B.
    Panchal, Satish K.
    Chinchane, Vaijanath L.
    FILOMAT, 2021, 35 (09) : 2973 - 2984
  • [5] Generalized proportional fractional integral Hermite–Hadamard’s inequalities
    Tariq A. Aljaaidi
    Deepak B. Pachpatte
    Thabet Abdeljawad
    Mohammed S. Abdo
    Mohammed A. Almalahi
    Saleh S. Redhwan
    Advances in Difference Equations, 2021
  • [6] Generalized proportional fractional integral Hermite-Hadamard's inequalities
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    Abdeljawad, Thabet
    Abdo, Mohammed S.
    Almalahi, Mohammed A.
    Redhwan, Saleh S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [7] THE MINKOWSKI'S INEQUALITIES UTILIZING NEWLY DEFINED GENERALIZED FRACTIONAL INTEGRAL OPERATORS
    Usta, Fuat
    Budak, Huseyin
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 686 - 701
  • [8] Generalized proportional fractional integral inequalities for convex functions
    Neamah, Majid K.
    Ibrahim, Alawiah
    AIMS MATHEMATICS, 2021, 6 (10): : 10765 - 10777
  • [9] On Fractional Inequalities Using Generalized Proportional Hadamard Fractional Integral Operator
    Chinchane, Vaijanath L.
    Nale, Asha B.
    Panchal, Satish K.
    Chesneau, Christophe
    Khandagale, Amol D.
    AXIOMS, 2022, 11 (06)
  • [10] Fractional Minkowski-Type Integral Inequalities via the Unified Generalized Fractional Integral Operator
    Gao, Tingmei
    Farid, Ghulam
    Ahmad, Ayyaz
    Luangboon, Waewta
    Nonlaopon, Kamsing
    JOURNAL OF FUNCTION SPACES, 2022, 2022