Generalized proportional fractional integral functional bounds in Minkowski's inequalities

被引:8
|
作者
Aljaaidi, Tariq A. [1 ]
Pachpatte, Deepak B. [1 ]
Shatanawi, Wasfi [2 ,3 ,4 ]
Abdo, Mohammed S. [5 ]
Abodayeh, Kamaleldin [2 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad, MS, India
[2] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Hashemite Univ, Dept Math, Zarqa, Jordan
[5] Hodeidah Univ, Dept Math, Al Hodeidah, Yemen
关键词
Minkowski inequalities; Fractional inequalities; psi-proportional fractional operators; GRUSS-TYPE INEQUALITIES;
D O I
10.1186/s13662-021-03582-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research paper, we improve some fractional integral inequalities of Minkowski-type. Precisely, we use a proportional fractional integral operator with respect to another strictly increasing continuous function psi. The functions used in this work are bounded by two positive functions to get reverse Minkowski inequalities in a new sense. Moreover, we introduce new fractional integral inequalities which have a close relationship to the reverse Minkowski-type inequalities via psi-proportional fractional integral, then with the help of this fractional integral operator, we discuss some new special cases of reverse Minkowski-type inequalities through this work. An open issue is covered in the conclusion section to extend the current findings to be more general.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Fractional integral inequalities for generalized convexity
    Kashuri, Artion
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Budak, Hiiseyin
    Sarikaya, Mehmet Zeki
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (03) : 63 - 83
  • [32] Certain generalized fractional integral inequalities
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Khan, Aftab
    Tassaddiq, Asifa
    Abouzaid, Moheb Saad
    AIMS MATHEMATICS, 2020, 5 (02): : 1588 - 1602
  • [33] Generalized integral inequalities for fractional calculus
    Samraiz, Muhammad
    Iqbal, Sajid
    Pecaric, Josip
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [34] Caputo generalized ψ-fractional integral inequalities
    Anastassiou, George A.
    JOURNAL OF APPLIED ANALYSIS, 2021, 27 (01) : 107 - 120
  • [35] A Note on Reverse Minkowski Inequality via Generalized Proportional Fractional Integral Operator with respect to Another Function
    Rashid, Saima
    Jarad, Fahd
    Chu, Yu-Ming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [36] SOME NEW BOUNDS ANALOGOUS TO GENERALIZED PROPORTIONAL FRACTIONAL INTEGRAL OPERATOR WITH RESPECT TO ANOTHER FUNCTION
    Rashid, Saima
    Jarad, Fahd
    Hammouch, Zakia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (10): : 3703 - 3718
  • [37] Simpson type integral inequalities for generalized fractional integral
    Fatma Ertuğral
    Mehmet Zeki Sarikaya
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3115 - 3124
  • [38] Simpson type integral inequalities for generalized fractional integral
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3115 - 3124
  • [39] INEQUALITIES OF CHEBYSHEV-POLYA-SZEGO TYPE VIA GENERALIZED PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Ekinci, Alper
    Nadeem, Muhammad
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 717 - 732
  • [40] New Generalized Reverse Minkowski Inequality and Related Integral Inequalities via Generalized κ-Fractional Hilfer-Katugampola Derivative
    Naz, Samaira
    Naeem, Muhammad Nawaz
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2021, 53 (04): : 247 - 260