Examination of the vibroacoustic characteristics of 6 kW proton exchange membrane fuel cell

被引:0
|
作者
Grzeczka, Grzegorz [2 ]
Listewnik, Karol [1 ,2 ]
Klaczynski, Maciej [3 ]
Cioch, Witold [3 ]
机构
[1] Polish Naval Acad, Inst Elect Engn & Automat, Gdynia, Poland
[2] Polish Naval Acad, Inst Elect Engn & Automat, Gdynia, Poland
[3] AGH Univ Sci & Technol, Dept Mech & Vibroacoust, PL-30059 Krakow, Poland
关键词
stealth technology; low observable technology; ship power system; fuel cell PEM; SIGNAL;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
An analysis of existing air independent propulsion system solutions shows that fuel cells have the potential to achieve the greatest energy efficiency and silencing actions resulting from direct conversion of energy during a chemical reaction without moving parts. This paper describes research intended to identify noise generated by a fuel cell demonstrator and the first phase of work related to its silencing. During these investigations main noise sources were determined, while sound propagation and sound insulation of the fuel cell enclosure were performed in accordance with the civilian and military standardization guidelines.
引用
收藏
页码:4025 / 4034
页数:10
相关论文
共 50 条
  • [41] Proton Exchange Membrane Fuel Cell Reversal: A Review
    Qin, Congwei
    Wang, Jue
    Yang, Daijun
    Li, Bing
    Zhang, Cunman
    CATALYSTS, 2016, 6 (12):
  • [42] Proton exchange membrane fuel cell model for prognosis
    Detti, A. H.
    Jemei, S.
    Steiner, N. Yousfi
    2018 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2018,
  • [43] Applications of proton exchange membrane fuel cell systems
    Wee, Jung-Ho
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (08): : 1720 - 1738
  • [44] Polybenzimidazoles as proton exchange membrane in fuel cell applications
    Chikhaliyae, Navin P.
    Rathwa, Yashesh J.
    Likhariya, Taruna
    HIGH PERFORMANCE POLYMERS, 2021, 33 (09) : 998 - 1011
  • [45] Performance of a proton exchange membrane fuel cell stack
    Johnson, R
    Morgan, C
    Witmer, D
    Johnson, T
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (08) : 879 - 887
  • [46] Cold start of proton exchange membrane fuel cell
    Luo, Yueqi
    Jiao, Kui
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2018, 64 : 29 - 61
  • [47] A flexible portable proton exchange membrane fuel cell
    Hsu, Fu-Kuang
    Lee, Ming-San
    Lin, Chi-Chang
    Lin, Yu-Kuo
    Hsu, Wei-Ting
    JOURNAL OF POWER SOURCES, 2012, 219 : 180 - 187
  • [48] Oxygen electrode for proton exchange membrane fuel cell
    Lu, L.H.
    Jin, L.H.
    Wang, J.T.
    Dianyuan Jishu/Chinese Journal of Power Sources, 2001, 25 (02):
  • [49] Thermodynamic analysis of a Proton Exchange Membrane fuel cell
    Ozgur, Tayfun
    Yakaryilmaz, Ali Cem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (38) : 18007 - 18013
  • [50] Accelerated conditioning for a proton exchange membrane fuel cell
    Yuan, Xiao-Zi
    Sun, Jian Colin
    Wang, Haijiang
    Li, Hui
    JOURNAL OF POWER SOURCES, 2012, 205 : 340 - 344