The orientable genus of some joins of complete graphs with large edgeless graphs

被引:13
|
作者
Ellingham, M. N. [1 ]
Stephens, D. Christopher [2 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
基金
美国国家科学基金会;
关键词
Orientable genus; Join; Hamilton cycle embedding; NONORIENTABLE GENUS; EMBEDDINGS;
D O I
10.1016/j.disc.2007.12.098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an earlier paper the authors showed that with one exception the nonorientable genus of the graph (K-m) over bar, + K-n with m >= n - 1, the join of a complete graph with a large edgeless graph, is the same as the nonorientable genus of the spanning subgraph (K-m) over bar + (K-n) over bar = K-m,K-n. The orientable genus problem for (K-m) over bar + K-n with m >= n - 1 seems to be more difficult, but ill this paper we find the orientable genus of some of these graphs. In particular, we determine the genus of (K-m) over bar + K-n when n is even and m >= n, the genus of (K-m) over bar + K-n when n = 2(p) + 2 for p >= 3 and m >= n - 1, and the genus of (K-m) over bar + K-n when n = 2(p) + 1 for p >= 3 and m >= n + 1. In all of these cases the genus is the same as the genus of K-m,K-n namely inverted right perpendicular(m - 2)(n - 2)/4inverted left perpendicular. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1190 / 1198
页数:9
相关论文
共 50 条
  • [31] The genus distributions for a certain type of permutation graphs in orientable surfaces
    Rong-xia Hao
    Wei-li He
    Liu Yan-pei
    Er-ling Wei
    Science in China Series A: Mathematics, 2007, 50 : 1748 - 1754
  • [32] Orientable step domination of complete r-partite graphs
    Lai, YL
    Chiang, FH
    Lin, CH
    Yu, TC
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XVI, PROCEEDINGS: COMPUTER SCIENCE III, 2002, : 12 - 30A
  • [33] Prime orientable graphs
    Belkhechine, Houmem
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [34] Exponential families of non-isomorphic non-triangular orientable genus embeddings of complete graphs
    Korzhik, VP
    Voss, HJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 86 (01) : 186 - 211
  • [35] Some Classes of Disconnected Antimagic Graphs and Their Joins
    WANG Tao1
    2.Department of Mathematics
    3.Department of Mathematics
    WuhanUniversityJournalofNaturalSciences, 2012, 17 (03) : 195 - 199
  • [36] Biembeddings of metacyclic groups and triangulations of orientable surfaces by complete graphs
    Garnnell, M. J.
    Knor, M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [37] The nonorientable genus of complete tripartite graphs
    Ellingham, M. N.
    Stephens, Chris
    Zha, Xiaoya
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) : 529 - 559
  • [38] THE GENUS OF NEARLY COMPLETE BIPARTITE GRAPHS
    MOHAR, B
    PARSONS, TD
    PISANSKI, T
    ARS COMBINATORIA, 1985, 20B : 173 - 183
  • [39] On the genus of some total graphs
    Jahromi, L. Hamidian
    Abbasi, A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 560 - 570
  • [40] GENUS EMBEDDINGS FOR SOME COMPLETE TRIPARTITE GRAPHS - PRELIMINARY-REPORT
    STAHL, S
    WHITE, AT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A228 - A228