PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data

被引:118
|
作者
Hernandez-de-Diego, Rafael [1 ]
Tarazona, Sonia [1 ,2 ]
Martinez-Mira, Carlos [1 ]
Balzano-Nogueira, Leandro [3 ,4 ]
Furio-Tari, Pedro [1 ]
Pappas Jr, Georgios J. [5 ]
Conesa, Ana [1 ,3 ,4 ]
机构
[1] Ctr Invest Principe Felipe, Genom Gene Express Lab, Valencia, Spain
[2] Univ Politecn Valencia, Dept Appl Stat Operat Res & Qual, Valencia, Spain
[3] Univ Florida, Inst Food & Agr Sci, Microbiol & Cell Sci Dept, Gainesville, FL 32611 USA
[4] Univ Florida, Genet Inst, Gainesville, FL USA
[5] Univ Brasilia, Biol Sci Inst, Dept Cellular Biol, Brasilia, DF, Brazil
关键词
TOOL; INTEGRATION; PATHVIEW;
D O I
10.1093/nar/gky466
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The increasing availability of multi-omic platforms poses new challenges to data analysis. Joint visualization of multi-omics data is instrumental in better understanding interconnections across molecular layers and in fully utilizing the multi-omic resources available to make biological discoveries. We present here PaintOmics 3, a web-based resource for the integrated visualization of multiple omic data types onto KEGG pathway diagrams. PaintOmics 3 combines server-end capabilities for data analysis with the potential of modern web resources for data visualization, providing researchers with a powerful framework for interactive exploration of their multi-omics information. Unlike other visualization tools, PaintOmics 3 covers a comprehensive pathway analysis workflow, including automatic feature name/identifier conversion, multi-layered feature matching, pathway enrichment, network analysis, interactive heatmaps, trend charts, and more. It accepts a wide variety of omic types, including transcriptomics, proteomics and metabolomics, as well as region-based approaches such as ATAC-seq or ChIP-seq data. The tool is freely available at www.paintomics.org
引用
收藏
页码:W503 / W509
页数:7
相关论文
共 50 条
  • [21] Intuitive Visualization and Analysis of Multi-Omics Data and Application to Escherichia coli Carbon Metabolism
    Enjalbert, Brice
    Jourdan, Fabien
    Portais, Jean-Charles
    PLOS ONE, 2011, 6 (06):
  • [22] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [23] Machine learning for the analysis of multi-omics data
    Sun, Yanni
    METHODS, 2021, 189 : 1 - 2
  • [24] PhenoMultiOmics: an enzymatic reaction inferred multi-omics network visualization web server
    Shi, Yuying
    Xu, Botao
    Wang, Zhe
    Chen, Qitao
    Chai, Jie
    Wang, Cheng
    BIOINFORMATICS, 2024, 40 (11)
  • [25] Panomicon: A web-based environment for interactive, visual analysis of multi-omics data
    Osorio, Rodolfo S. Allendes
    Nystrom-Persson, Johan T.
    Nojima, Yosui
    Kosugi, Yuji
    Mizuguchi, Kenji
    Natsume-Kitatani, Yayoi
    HELIYON, 2020, 6 (08)
  • [26] trackViewer: a Bioconductor package for interactive and integrative visualization of multi-omics data
    Ou, Jianhong
    Zhu, Lihua Julie
    NATURE METHODS, 2019, 16 (06) : 453 - 454
  • [27] Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data
    Garcia-Alcalde, Fernando
    Garcia-Lopez, Federico
    Dopazo, Joaquin
    Conesa, Ana
    BIOINFORMATICS, 2011, 27 (01) : 137 - 139
  • [28] PathwayPCA: an R/Bioconductor Package for Pathway Based Integrative Analysis of Multi-Omics Data
    Odom, Gabriel J.
    Ban, Yuguang
    Colaprico, Antonio
    Liu, Lizhong
    Silva, Tiago Chedraoui
    Sun, Xiaodian
    Pico, Alexander R.
    Zhang, Bing
    Wang, Lily
    Chen, Xi
    PROTEOMICS, 2020, 20 (21-22)
  • [29] MOPA: An integrative multi-omics pathway analysis method for measuring omics activity
    Jeon, Jaemin
    Han, Eon Yong
    Jung, Inuk
    PLOS ONE, 2023, 18 (03):
  • [30] Interpretable meta-learning of multi-omics data for survival analysis and pathway enrichment
    Cho, Hyun Jae
    Shu, Mia
    Bekiranov, Stefan
    Zang, Chongzhi
    Zhang, Aidong
    BIOINFORMATICS, 2023, 39 (04)