机构:
Univ Grenoble 1, Inst Fourier, Math Lab, UMR 5582,CNRS, F-38402 St Martin Dheres, FranceUniv Grenoble 1, Inst Fourier, Math Lab, UMR 5582,CNRS, F-38402 St Martin Dheres, France
Malgrange, B
[1
]
机构:
[1] Univ Grenoble 1, Inst Fourier, Math Lab, UMR 5582,CNRS, F-38402 St Martin Dheres, France
Let X denote a complex analytic manifold, and let Aut(X) denote the space of invertible maps of a germ (X, a) to a germ (X, b); this space is obviously a groupoid; roughly speaking, a "Lie groupoid" is a subgroupoid of Aut(X) defined by a system of partial differential equations. To a foliation with singularities on X one attaches such a groupoid, e.g. the smallest one whose Lie algebra contains the vector fields tangent to the foliation. It is called "the Galois groupoid of the foliation". Some examples are considered, for instance foliations of codimension one, and foliations defined by linear differential equations; in this last case one recuperates the usual differential Galois group.
机构:
Univ Autonoma Santo Domingo, Inst Matemat Escuela Mat 4, Santo Domingo, Dominican RepUniv Autonoma Santo Domingo, Inst Matemat Escuela Mat 4, Santo Domingo, Dominican Rep
ACOSTA-HUMANEZ, Primitivo
BARKATOU, Moulay
论文数: 0引用数: 0
h-index: 0
机构:
XLim Univ Limoges 4, CNRS, Limoges, FranceUniv Autonoma Santo Domingo, Inst Matemat Escuela Mat 4, Santo Domingo, Dominican Rep
BARKATOU, Moulay
SANCHEZ-CAUCE, Raquel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Educ Distancia UNED, Dept Artificial Intelligence, Madrid, SpainUniv Autonoma Santo Domingo, Inst Matemat Escuela Mat 4, Santo Domingo, Dominican Rep
SANCHEZ-CAUCE, Raquel
Jacques-Arthur, W. E. I. L.
论文数: 0引用数: 0
h-index: 0
机构:
XLim Univ Limoges 4, CNRS, Limoges, FranceUniv Autonoma Santo Domingo, Inst Matemat Escuela Mat 4, Santo Domingo, Dominican Rep