Microstructure and phase dependence of magnetic properties of CoFeB nanowires

被引:2
|
作者
Chen, Zhe [1 ,2 ]
Zhang, Kewei [1 ,2 ]
Zhu, Qianke [1 ,2 ]
Guo, Qi [1 ,2 ]
Jiang, Yong [1 ,2 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Shanxi, Peoples R China
[2] Key Lab Shanxi Prov, Lab Magnet & Elect Funct Mat & Applicat, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic properties; Nanowires; Magnetic anisotropy; Coercivity; ARRAYS; COERCIVITY;
D O I
10.1016/j.vacuum.2020.109797
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Arrays of amorphous CoFeB nanowires with the diameter of 250 nm and length of 20 mu m were fabricated by electrodepositing in pores of anodic aluminum oxide (AAO) templates. The corresponding changes of coercivity (H-c), remanence squareness (M-r/M-s), and the shape of hysteresis loops of NWs before and after annealing with the microstructure evolution have been investigated. The XRD and TEM results showed the precipitation of partial Co nanocrystallites and complete crystallization for the annealing treatment at 573 K and 773 K, respectively. The VSM results indicated a strong magnetic anisotropy in the amorphous nanowires and the easy magnetization axis was in perpendicular to the long wire axis. Both H-c and M-r/M-s increased with increasing annealing temperature. The magnetization reversal process occurred by the curling model for the amorphous nanowires and exhibited a transition for magnetization reversal after thermal annealing. In all, the magnetic properties of CoFeB nanowires can be controlled by tuning their microstructure with thermal annealing.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO
    Lee, Kyoung-Min
    Choi, Jun Woo
    Sok, Junghyun
    Min, Byoung-Chul
    AIP ADVANCES, 2017, 7 (06):
  • [32] Orientation Dependence of the Magnetic Moments of α-Fe(PrDy)(CoFeB) Microwires
    Koplak, O. V.
    Dvoretskaya, E. V.
    Talantsev, A. D.
    Korolev, D. V.
    Valeev, R. A.
    Piskorskii, V. P.
    Denisova, A. S.
    Morgunov, R. B.
    PHYSICS OF THE SOLID STATE, 2020, 62 (04) : 648 - 652
  • [33] Magnetic and electrical properties of amorphous CoFeB films
    Jen, SU
    Yao, YD
    Chen, YT
    Wu, JM
    Lee, CC
    Tsai, TL
    Chang, YC
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (05)
  • [34] Magnetic Field Dependence of Torque Signals in Synthetic Antiferromagnetic Coupled CoFeB/Ru/CoFeB Thin Film
    Yoon, Seok Soo
    Jun, Woo Sang
    Kim, Dong Young
    JOURNAL OF THE KOREAN MAGNETICS SOCIETY, 2011, 21 (03): : 83 - 87
  • [35] Influence of Ta buffer layer thickness on magnetic properties and microstructure parameters of CoFeB and MgO layers.
    Kanak, J.
    Wrona, J.
    Banasik, M.
    Zywczak, A.
    Powroznik, W.
    Czapkiewicz, M.
    Stobiecki, T.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [36] Magnetic and Free-layer Properties of MgO/(Co)FeB/MgO Structures: Dependence on CoFeB Composition
    Bersweiler M.
    Sato H.
    Ohno H.
    IEEE Magnetics Letters, 2017, 8
  • [37] Magnetic and Free-Layer Properties of MgO/(Co)FeB/MgO Structures: Dependence on CoFeB Composition
    Bersweiler, Mathias
    Sato, Hideo
    Ohno, Hideo
    IEEE MAGNETICS LETTERS, 2017, 8
  • [38] Effect of Low-Frequency AC Magnetic Susceptibility and Magnetic Properties of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions
    Chen, Yuan-Tsung
    Lin, Sung-Hao
    Sheu, Tzer-Shin
    NANOMATERIALS, 2014, 4 (01) : 46 - 54
  • [39] Magnetothermodynamic Properties and Anomalous Magnetic Phase Transition in FeRh Nanowires
    Matsumoto, K.
    Kimata, M.
    Kondou, K.
    Temple, R. C.
    Marrows, C. H.
    Otani, Y.
    IEEE TRANSACTIONS ON MAGNETICS, 2018, 54 (11)
  • [40] Effect of Cu inserted layer between the IrMn and CoFeB interface on magnetic properties of CoFeB
    Joo, S.J. (joosungjoong@kaist.ac.kr), 1600, American Institute of Physics Inc. (95):