A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter

被引:161
|
作者
Jiang, Cong [1 ]
Wang, Shunli [1 ]
Wu, Bin [1 ]
Fernandez, Carlos [2 ]
Xiong, Xin [1 ]
Coffie-Ken, James [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
[2] Robert Gordon Univ, Sch Pharm & Life Sci, Aberdeen AB10 7GJ, Scotland
基金
中国国家自然科学基金;
关键词
State-of-charge; Extended Kalman filter; Adaptive; Square root; Power lithium-ion battery; ONLINE STATE;
D O I
10.1016/j.energy.2020.119603
中图分类号
O414.1 [热力学];
学科分类号
摘要
The control strategy of electric vehicles mainly depends on the power battery state-of-charge estimation. One of the most important issues is the power lithium-ion battery state-of-charge (SOC) estimation. Compare with the extended Kalman filter algorithm, this paper proposed a novel adaptive square root extended Kalman filter together with the Thevenin equivalent circuit model which can solve the problem of filtering divergence caused by computer rounding errors. It uses Sage-Husa adaptive filter to update the noise variable, and performs square root decomposition on the covariance matrix to ensure its non negative definiteness. Moreover, a multi-scale dual Kalman filter algorithm is used for joint estimation of SOC and capacity; the forgetting factor recursive least-square method is used for parameter identification. To verify the feasibility of the algorithm under complicated operating conditions, different types of dynamic working conditions are performed on the ternary lithium-ion battery. The proposed algorithm has robust and accurate SOC estimation results and can eliminate computer rounding errors to improve adaptability compared to the conventional extended Kalman filter algorithm. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] State-of-charge estimation of lithium ion batteries based on adaptive iterative extended Kalman filter
    He, Zhigang
    Li, Yaotai
    Sun, Yanyan
    Zhao, Shichao
    Lin, Chunjing
    Pan, Chaofeng
    Wang, Limei
    JOURNAL OF ENERGY STORAGE, 2021, 39
  • [22] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [23] State-of-charge estimation with adaptive extended Kalman filter and extended stochastic gradient algorithm for lithium-ion batteries
    Ye, Yuanmao
    Li, Zhenpeng
    Lin, Jingxiong
    Wang, Xiaolin
    JOURNAL OF ENERGY STORAGE, 2022, 47
  • [24] Estimation of state-of-charge based on unscented Kalman particle filter for storage lithium-ion battery
    Gao, Shengwei
    Kang, Mingren
    Li, Longnv
    Liu, Xiaoming
    JOURNAL OF ENGINEERING-JOE, 2019, (16): : 1858 - 1863
  • [25] Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
    Zheng Hong
    Liu Xu
    Wei Min
    CHINESE PHYSICS B, 2015, 24 (09)
  • [26] State-of-Charge Estimation for Lithium-ion Battery using Busse's Adaptive Unscented Kalman Filter
    Yao, Low Wen
    Aziz, J. A.
    Idris, N. R. N.
    2015 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2015, : 227 - 232
  • [27] Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
    郑宏
    刘煦
    魏旻
    Chinese Physics B, 2015, 24 (09) : 585 - 591
  • [28] State of charge estimation of lithium-ion battery based on extended Kalman filter and unscented Kalman filter techniques
    Priya, Rajbala Purnima
    Sanjay, R.
    Sakile, Rajakumar
    ENERGY STORAGE, 2023, 5 (03)
  • [29] State of Charge Estimation for Lithium-Ion Battery by Using Dual Square Root Cubature Kalman Filter
    Chen, Luping
    Xu, Liangjun
    Wang, Ruoyu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [30] State-of-Charge Estimation of Lithium-ion Battery Based on a Combined Method of Neural Network and Unscented Kalman filter
    Hosseininasab, Seyedmehdi
    Wan, Zhiwen
    Bender, Tim
    Vagnoni, Giovanni
    Bauer, Lennart
    2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,