On the mean and variance of response times under the diffusion model with an application to parameter estimation

被引:53
|
作者
Grasman, Raoul P. P. P. [1 ]
Wagenmakers, Eric-Jan [1 ]
van der Maas, Han L. J. [1 ]
机构
[1] Univ Amsterdam, Dept Psychol, NL-1018 WB Amsterdam, Netherlands
关键词
Reaction time/response time; Stochastic processes; Diffusion model; Estimation; Response time mean; Response time variance; CHOICE-REACTION-TIME; COVARIANCE-STRUCTURES; DECISION-MAKING; ACCURACY; RETRIEVAL; MEMORY; ROBUST; SPEED;
D O I
10.1016/j.jmp.2009.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give closed form expressions for the mean and variance of RTs for Ratcliff's diffusion model [Ratcliff, R. (1978).A theory of memory retrieval. Psychological Review, 85, 59-108] under the simplifying assumption that there is no variability across trials in the parameters. These expressions are more general than those currently available. As an application, we demonstrate their use in a method-of-moments estimation procedure that addresses some of the weaknesses of the EZ method [Wagenmakers, E.-J., van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 14, 3-22], and illustrate this with lexical decision data. We discuss further possible applications. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 50 条
  • [41] A convex optimization method for joint mean and variance parameter estimation of large-margin CDHMM
    Chang, Tsung-Hui
    Luo, Zhi-Quan
    Deng, Li
    Chi, Chong-Yung
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 4053 - +
  • [42] PARAMETER-ESTIMATION OF A RECURRENT DIFFUSION FROM ZERO CROSSING-TIMES
    FLORENSZMIROU, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (13): : 655 - 658
  • [43] Functional Data Analysis for Imaging Mean Function Estimation: Computing Times and Parameter Selection
    Arias-Lopez, Juan A.
    Cadarso-Suarez, Carmen
    Aguiar-Fernandez, Pablo
    COMPUTERS, 2022, 11 (06)
  • [44] Dynamic Mean-Variance Model with Borrowing Constraint under the Constant Elasticity of Variance Process
    Chang, Hao
    Rong, Xi-min
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [45] Interval parameter estimation under model uncertainty
    Nazin, SA
    Polyak, BT
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2005, 11 (02) : 225 - 237
  • [46] OPTIMAL PORTFOLIO PROBLEM FOR AN INSURER UNDER MEAN-VARIANCE CRITERIA WITH JUMP-DIFFUSION STOCHASTIC VOLATILITY MODEL
    Shen, Weiwei
    Yin, Juliang
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (09) : 7054 - 7071
  • [47] The estimation of the parameter of uniformly distributed failure-times under censoring
    Weissman, I
    Cohen, A
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (04) : 775 - 788
  • [48] ESTIMATION OF THE MEAN IN A VARIANCE COMPONENT MODEL - A COMPARISON OF ESTIMATION PROCEDURES OF ANOVA, MINQ AND SAMPLING THEORY
    TROMMER, R
    BIOMETRICAL JOURNAL, 1985, 27 (04) : 363 - 373
  • [49] When accuracy rates and mean response times lead to false conclusions: A simulation study based on the diffusion model
    Lerche, Veronika
    Voss, Andreas
    QUANTITATIVE METHODS FOR PSYCHOLOGY, 2020, 16 (02): : 107 - 119
  • [50] Mean-Variance Portfolio Selection Under Volterra Heston Model
    Han, Bingyan
    Wong, Hoi Ying
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01): : 683 - 710