Deep Reinforcement Learning Policy in Hex Game System

被引:0
|
作者
Lu, Mengxuan [1 ]
Li, Xuejun [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Peoples R China
关键词
Computer Game; Hex Game; Deep Reinforcement Learning; Actor-Critic A3C; GO;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hex game is a zero-sum chess game. It has a large solution space when using 11 x 11 size of chess board. In recent years, deep reinforcement learning -based Go game systems, i.e. AlphaGo and AlphaGo Zero, have gotten huge achievement. In this paper, we design the self-learning method and system structure of Hex game. design policy network and value network referred to residual network, and use asynchronous advantage actor-critic algorithm to train policy network and value network. The comparison of deep reinforcement learning-based policy network and fixed strategy proves better effect of self-learning.
引用
收藏
页码:6623 / 6626
页数:4
相关论文
共 50 条
  • [1] Improving RTS Game AI by Supervised Policy Learning, Tactical Search, and Deep Reinforcement Learning
    Barriga, Nicolas A.
    Stanescu, Marius
    Besoain, Felipe
    Buro, Michael
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2019, 14 (03) : 8 - 18
  • [2] HEX: Human-in-the-loop explainability via deep reinforcement learning
    Lash, Michael T.
    DECISION SUPPORT SYSTEMS, 2024, 187
  • [3] Deep Reinforcement Learning for FlipIt Security Game
    Greige, Laura
    Chin, Peter
    COMPLEX NETWORKS & THEIR APPLICATIONS X, VOL 1, 2022, 1015 : 831 - 843
  • [4] Policy Reuse in Deep Reinforcement Learning
    Glatt, Ruben
    Helena, Anna
    Costa, Reali
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4929 - 4930
  • [5] Application of Deep Reinforcement Learning in Guandan Game
    Pan, Jiahong
    Zhang, Zhongtian
    Shen, Hengheng
    Zeng, Yi
    Wu, Lei
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 3499 - 3504
  • [6] Deep Reinforcement Learning with Godot Game Engine
    Ranaweera, Mahesh
    Mahmoud, Qusay H.
    ELECTRONICS, 2024, 13 (05)
  • [7] Deep Reinforcement Learning for General Game Playing
    Goldwaser, Adrian
    Thielscher, Michael
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1701 - 1708
  • [8] Learning to Coordinate with Deep Reinforcement Learning in Doubles Pong Game
    Diallo, Elhadji Amadou Oury
    Sugiyama, Ayumi
    Sugawara, Toshiharu
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 14 - 19
  • [9] Mastering air combat game with deep reinforcement learning
    Zhu, Jingyu
    Kuang, Minchi
    Zhou, Wenqing
    Shi, Heng
    Zhu, Jihong
    Han, Xu
    DEFENCE TECHNOLOGY, 2024, 34 : 295 - 312
  • [10] Augmenting Automated Game Testing with Deep Reinforcement Learning
    Bergdahl, Joakim
    Gordillo, Camilo
    Tollmar, Konrad
    Gisslen, Linus
    2020 IEEE CONFERENCE ON GAMES (IEEE COG 2020), 2020, : 600 - 603