A Geometric Approach to Time Evolution Operators of Lie Quantum Systems

被引:9
|
作者
Carinena, Jose F. [1 ]
de Lucas, Javier [1 ]
Ramos, Arturo [2 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dept Anal Econ, Zaragoza 50005, Spain
关键词
Time evolution; Lie systems; DEPENDENT HARMONIC-OSCILLATOR; SUPERPOSITION FORMULAS; DIFFERENTIAL-EQUATIONS; SCHRODINGER-EQUATION; RICCATI EQUATION; WAVE-FUNCTION; PHASE; PARTICLE; MOTION; STATES;
D O I
10.1007/s10773-008-9909-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.
引用
收藏
页码:1379 / 1404
页数:26
相关论文
共 50 条
  • [21] Lie Group Approach to Grushin Operators
    Dziubanski, Jacek
    Sikora, Adam
    JOURNAL OF LIE THEORY, 2021, 31 (01) : 1 - 14
  • [22] On the Geometric Interpretation of the Polynomial Lie Bracket for nonlinear time-delay systems
    Califano, C.
    Battilotti, S.
    Moog, C. H.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 555 - 560
  • [23] FINITE-DIMENSIONAL APPROXIMATION OF TIME EVOLUTION OPERATORS - A NONPERTURBATIVE APPROACH TO QUANTUM-FIELD THEORIES
    KROGER, H
    SMAILAGIC, A
    GIRARD, R
    PHYSICAL REVIEW D, 1985, 32 (12) : 3221 - 3227
  • [24] Lie Subalgebras of the Matrix Quantum Pseudodifferential Operators
    Batistelli, Karina
    Boyallian, Carina
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [25] Small denominators, frequency operators, and Lie transforms for nearly integrable quantum spin systems
    Gramespacher, T
    Weigert, S
    PHYSICAL REVIEW A, 1996, 53 (05) : 2971 - 2982
  • [26] Alternative approach to quantum imaginary time evolution
    Jouzdani, Pejman
    Johnson, Calvin W.
    Mucciolo, Eduardo R.
    Stetcu, Ionel
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [27] Quantum trajectory approach to the geometric phase: open bipartite systems
    Yi, XX
    Liu, DP
    Wang, W
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [28] Geometric approach to the distribution of quantum states in bipartite physical systems
    Batle, J.
    Abdel-Aty, Mahmoud
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (11) : 2540 - 2548
  • [29] TIME EVOLUTION AND SPECTRAL CONCENTRATION IN QUANTUM SYSTEMS
    BRANDAS, E
    PHYSICA A, 1975, 82 (01): : 97 - 112
  • [30] TIME EVOLUTION FOR LARGE QUANTUM SYSTEMS IN SUPERSPACE
    MISHIMA, N
    PETROSKY, TY
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) : 1087 - 1099