A Geometric Approach to Time Evolution Operators of Lie Quantum Systems

被引:9
|
作者
Carinena, Jose F. [1 ]
de Lucas, Javier [1 ]
Ramos, Arturo [2 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dept Anal Econ, Zaragoza 50005, Spain
关键词
Time evolution; Lie systems; DEPENDENT HARMONIC-OSCILLATOR; SUPERPOSITION FORMULAS; DIFFERENTIAL-EQUATIONS; SCHRODINGER-EQUATION; RICCATI EQUATION; WAVE-FUNCTION; PHASE; PARTICLE; MOTION; STATES;
D O I
10.1007/s10773-008-9909-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.
引用
收藏
页码:1379 / 1404
页数:26
相关论文
共 50 条
  • [1] A Geometric Approach to Time Evolution Operators of Lie Quantum Systems
    José F. Cariñena
    Javier de Lucas
    Arturo Ramos
    International Journal of Theoretical Physics, 2009, 48
  • [2] Time Evolution of Quadratic Quantum Systems: Evolution Operators, Propagators, and Invariants
    Sh. M. Nagiyev
    A. I. Ahmadov
    Theoretical and Mathematical Physics, 2019, 198 : 392 - 411
  • [3] TIME EVOLUTION OF QUADRATIC QUANTUM SYSTEMS: EVOLUTION OPERATORS, PROPAGATORS, AND INVARIANTS
    Nagiyev, Sh. M.
    Ahmadov, A. I.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 198 (03) : 392 - 411
  • [4] Alternative approach to time evolution of quantum systems
    Erol, Mustafa
    PHYSICS ESSAYS, 2020, 33 (04) : 358 - 366
  • [5] The index of geometric operators on Lie groupoids
    Pflaum, M. J.
    Posthuma, H.
    Tang, X.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (05): : 1135 - 1153
  • [6] A New Geometric Approach to Lie Systems and Physical Applications
    José F. Cariñena
    Arturo Ramos
    Acta Applicandae Mathematica, 2002, 70 : 43 - 69
  • [7] A new geometric approach to Lie systems and physical applications
    Cariñena, JF
    Ramos, A
    ACTA APPLICANDAE MATHEMATICAE, 2002, 70 (1-3) : 43 - 69
  • [8] Wigner quantum systems: Lie superalgebraic approach
    Palev, TD
    Stoilova, NI
    REPORTS ON MATHEMATICAL PHYSICS, 2002, 49 (2-3) : 395 - 404
  • [9] Variational quantum time evolution without the quantum geometric tensor
    Gacon, Julien
    Nys, Jannes
    Rossi, Riccardo
    Woerner, Stefan
    Carleo, Giuseppe
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [10] QUANTUM GROUPS AND LIE-ADMISSIBLE TIME EVOLUTION
    JANNUSSIS, A
    BRODIMAS, G
    MIGNANI, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (14): : L775 - L778