Partial Hypothesis Testing of Truncated Spline Model in Nonparametric Regression

被引:0
|
作者
Husni, Imra Atil [1 ,2 ]
Budiantara, I. Nyoman [1 ]
Zain, Ismaini [1 ]
机构
[1] Sepuluh Nopember Inst Technol, Fac Math Computat & Data Sci, Departmen Stat, Surabaya 60111, East Java, Indonesia
[2] Stat East Nusa Tenggara Prov, Kupang, Indonesia
关键词
Nonparametric; regression; variable;
D O I
10.1063/1.5062798
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonparametric regression is a method used to analyze the relation between response variables and predictor variables that do not follow a particular pattern. One common approach used in nonparametric regression is truncated spline, because of its high flexibility and good visual interpretation. The study of partial hypothesis testing in nonparametric regression is important in statistical inference. The likelihood ratio test will be used in order to define the test statistic. Theoretical study resulted in a the statistical test for partial hypothesis testing, denoted by Q* and following Student's t-distribution with (n-(1+(m+r)h) degrees of freedom.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A-Spline Regression for Fitting a Nonparametric Regression Function with Censored Data
    Yilmaz, Ersin
    Ahmed, Syed Ejaz
    Aydin, Dursun
    STATS, 2020, 3 (02): : 120 - 136
  • [42] TESTING FOR NO EFFECT IN NONPARAMETRIC REGRESSION
    EUBANK, RL
    LARICCIA, VN
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 36 (01) : 1 - 14
  • [43] Testing discontinuities in nonparametric regression
    Dai, Wenlin
    Zhou, Yuejin
    Tong, Tiejun
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (03) : 450 - 473
  • [44] Testing independence in nonparametric regression
    Neumeyer, Natalie
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (07) : 1551 - 1566
  • [45] Testing heteroscedasticity in nonparametric regression
    Dette, H
    Munk, A
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 693 - 708
  • [46] Testing homoscedasticity in nonparametric regression
    Liero, H
    JOURNAL OF NONPARAMETRIC STATISTICS, 2003, 15 (01) : 31 - 51
  • [47] Testing for additivity in nonparametric regression
    Eubank, RL
    Hart, JD
    Simpson, DG
    Stefanski, LA
    ANNALS OF STATISTICS, 1995, 23 (06): : 1896 - 1920
  • [48] Spline Estimation for Nonparametric Regression with Linear Process Errors
    Wu Xinqian
    Yang Wancai
    Han Yutao
    DATA PROCESSING AND QUANTITATIVE ECONOMY MODELING, 2010, : 156 - 160
  • [49] ADAPTIVE SPLINE ESTIMATES FOR NONPARAMETRIC REGRESSION-MODELS
    GOLUBEV, GK
    NUSSBAUM, M
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1992, 37 (03) : 521 - 529
  • [50] NONPARAMETRIC SPLINE REGRESSION WITH AUTOREGRESSIVE MOVING AVERAGE ERRORS
    KOHN, R
    ANSLEY, CF
    WONG, CM
    BIOMETRIKA, 1992, 79 (02) : 335 - 346