Stability of singular Hopf bifurcations

被引:7
|
作者
Yang, LJ [1 ]
Zeng, XW
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
singular Hopf bifurcation; singularly perturbed system; Lyapunov constant; stability constant; stability formula;
D O I
10.1016/j.jde.2004.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A stability formula is given for the singular Hopf bifurcation arising in singularly perturbed systems of the form (x)over dot = epsilonf (x, y, lambda), (y)over dot = g(x, y, lambda) in this paper. The derivation of the formula is based on a reduction technique and on an existing stability formula for Hopf bifurcation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:30 / 54
页数:25
相关论文
共 50 条
  • [41] On degenerate planar Hopf bifurcations
    Ricard, M. R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (06)
  • [42] A heterogenous Cournot duopoly with delay dynamics: Hopf bifurcations and stability switching curves
    Pecora, Nicolo
    Sodini, Mauro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 58 : 36 - 46
  • [43] Hopf bifurcations in dynamical systems
    Rionero, Salvatore
    RICERCHE DI MATEMATICA, 2019, 68 (02) : 811 - 840
  • [44] STABILITY AND HOPF BIFURCATIONS IN AN INVERTED PENDULUM, (VOL 60, PG 903, 1992)
    BLACKBURN, JA
    SMITH, HJT
    GRONBECHJENSEN, N
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (05) : 475 - 475
  • [45] HOPF BIFURCATIONS IN CORONAL LOOPS .1. STABILITY CONDITIONS FOR STATIC EQUILIBRIUM
    GOMEZ, D
    SCHIFINO, AS
    FONTAN, CF
    ASTROPHYSICAL JOURNAL, 1990, 352 (01): : 318 - 325
  • [46] Simplest normal forms of Hopf and generalized Hopf bifurcations
    Yu, P
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (10): : 1917 - 1939
  • [47] SILNIKOV-HOPF BIFURCATIONS
    DENG, B
    SAKAMOTO, K
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 119 (01) : 1 - 23
  • [48] HOPF BIFURCATIONS IN TORSIONAL DYNAMICS
    IRAVANI, MR
    SEMLYEN, A
    ABED, EH
    HAMDAN, AMA
    ALEXANDER, JC
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (01) : 28 - 36
  • [49] EQUIVALENCE OF DEGENERATE HOPF BIFURCATIONS
    EDALAT, A
    NONLINEARITY, 1991, 4 (03) : 685 - 695
  • [50] Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays
    Song, YL
    Han, MA
    Peng, YH
    CHAOS SOLITONS & FRACTALS, 2004, 22 (05) : 1139 - 1148