SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM WALKS IN RANDOM CONDUCTANCES

被引:7
|
作者
Fribergh, Alexander [1 ]
Kious, Daniel [2 ]
机构
[1] Univ Montreal, DMS, Pavillon Andre Aisenstadt,2920, Montreal, PQ H3T 1J4, Canada
[2] New York Univ Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
来源
ANNALS OF PROBABILITY | 2018年 / 46卷 / 02期
关键词
Random walks in random environments; random conductances; scaling limit; trap model; zero-speed; QUENCHED INVARIANCE-PRINCIPLES; PERCOLATION; CONVERGENCE; DIFFUSIONS; DYNAMICS; SPEED;
D O I
10.1214/16-AOP1159
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider biased random walks in positive random conductances on the d-dimensional lattice in the zero-speed regime and study their scaling limits. We obtain a functional law of large numbers for the position of the walker, properly rescaled. Moreover, we state a functional central limit theorem where an atypical process, related to the fractional kinetics, appears in the limit.
引用
收藏
页码:605 / 686
页数:82
相关论文
共 50 条
  • [21] Random walks in random conductances: Decoupling and spread of infection
    Gracar, P.
    Stauffer, A.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3547 - 3569
  • [22] Quenched invariance principles for random walks with random conductances
    Mathieu, P.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (05) : 1025 - 1046
  • [23] Scaling limits of recurrent excited random walks on integers
    Dolgopyat, Dmitry
    Kosygina, Elena
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 14
  • [24] Aging and sub-aging for one-dimensional random walks amongst random conductances
    Croydon, D. A.
    Kious, D.
    Scali, C.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2025, 182
  • [25] BIASED RANDOM WALK IN POSITIVE RANDOM CONDUCTANCES ON Zd
    Fribergh, Alexander
    ANNALS OF PROBABILITY, 2013, 41 (06): : 3910 - 3972
  • [26] The speed of biased random walk among random conductances
    Berger, Noam
    Gantert, Nina
    Nagel, Jan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 862 - 881
  • [27] Random walks on Galton-Watson trees with random conductances
    Gantert, Nina
    Mueller, Sebastian
    Popov, Serguei
    Vachkovskaia, Marina
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1652 - 1671
  • [28] Scaling limits of tree-valued branching random walks
    Duquesne, Thomas
    Khanfir, Robin
    Lin, Shen
    Torri, Niccole
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [29] Densities of Scaling Limits of Coupled Continuous Time Random Walks
    Marcin Magdziarz
    Tomasz Zorawik
    Fractional Calculus and Applied Analysis, 2016, 19 : 1488 - 1506
  • [30] DENSITIES OF SCALING LIMITS OF COUPLED CONTINUOUS TIME RANDOM WALKS
    Magdziarz, Marcin
    Zorawik, Tomasz
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (06) : 1488 - 1506