nonlinear differential equations;
Peano's existence theorem;
regularity;
diffeomorphism;
local invertibility;
Wazewski's theorem;
Hadamard-Levy-Plastock condition;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Using a novel Wintner-type formulation of the classical Peano's existence theorem [Math. Ann. 37 (1890), 182-228], we enhance Wazewski's result on invertibility of maps defined on closed balls [Ann. Soc. Pol. Math. 20 ( 1947), 81-125] securing the size of the domain of invertibility that agrees with the bounds derived by John [Comm. Pure Appl. Math. 21 ( 1968), 77-110] and Sotomayor [Z. Angew. Math. Phys. 41 (1990), 306-310].
机构:
Cent South Univ Forestry & Technol, Coll Sci, 498 Shaoshan South Rd, Changsha 410004, Peoples R ChinaCent South Univ Forestry & Technol, Coll Sci, 498 Shaoshan South Rd, Changsha 410004, Peoples R China
Liu, Dayong
Fang, Aixiang
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ Arts & Sci, Coll Math & Phys, 3150 Dongting Ave, Changde 415000, Peoples R ChinaCent South Univ Forestry & Technol, Coll Sci, 498 Shaoshan South Rd, Changsha 410004, Peoples R China
机构:
Departamento de Matemática, Universidade Federal do Ceará, CEP 60405, Fortaleza CEDepartamento de Matemática, Universidade Federal do Ceará, CEP 60405, Fortaleza CE
Fernandes A.
Gutierrez C.
论文数: 0引用数: 0
h-index: 0
机构:
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 13560-970, São Carlos SPDepartamento de Matemática, Universidade Federal do Ceará, CEP 60405, Fortaleza CE
Gutierrez C.
Rabanal R.
论文数: 0引用数: 0
h-index: 0
机构:
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 13560-970, São Carlos SPDepartamento de Matemática, Universidade Federal do Ceará, CEP 60405, Fortaleza CE