There is little work done for underwater saliency objection detection (SOD), but it is vital to artificial intelligence-driven underwater analysis. Recent research has shown that depth information would increase SOD accuracy, but it may not be accessible to most RGB datasets. Since image blurriness could be an estimate of underwater scene depth [1], we propose to use a self-derived blurriness cue and fuse it into the RGB stream to boost SOD accuracy. Experimental results demonstrate the effectiveness of the proposed method. Our work would also contribute a public underwater SOD dataset to the field of underwater SOD.
机构:
CSIR CMERI, AcSIR, Durgapur, W Bengal, IndiaCSIR CMERI, AcSIR, Durgapur, W Bengal, India
Das, Dibyendu Kumar
Shit, Sahadeb
论文数: 0引用数: 0
h-index: 0
机构:
CSIR CMERI, AcSIR, Durgapur, W Bengal, IndiaCSIR CMERI, AcSIR, Durgapur, W Bengal, India
Shit, Sahadeb
Ray, Dip Narayan
论文数: 0引用数: 0
h-index: 0
机构:
CSIR CMERI, AcSIR, Durgapur, W Bengal, India
CSIR CMERI, Design Management & Syst Engn, Durgapur, W Bengal, IndiaCSIR CMERI, AcSIR, Durgapur, W Bengal, India
Ray, Dip Narayan
Majumder, Somajyoti
论文数: 0引用数: 0
h-index: 0
机构:
CSIR CMERI, Design Management & Syst Engn, Durgapur, W Bengal, IndiaCSIR CMERI, AcSIR, Durgapur, W Bengal, India