A direct method for solving inverse Sturm-Liouville problems*

被引:13
|
作者
Kravchenko, Vladislav V. [1 ]
Torba, Sergii M. [1 ]
机构
[1] Cinvestav, Dept Matemat, Unidad Queretaro, Libramiento Norponiente 2000, Queretaro 76230, Qro, Mexico
关键词
Sturm– Liouville spectral problem; Gelfand– Levitan equation; inverse spectral problem; transmutation operator; Neumann series of Bessel functions; Fourier– Legendre series; BOUNDARY-VALUE METHOD; POTENTIALS; RECONSTRUCTION; REPRESENTATION; SERIES; TERMS;
D O I
10.1088/1361-6420/abce9f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two main inverse Sturm-Liouville problems: the problem of recovery of the potential and the boundary conditions from two spectra or from a spectral density function. A simple method for practical solution of such problems is developed, based on the transmutation operator approach, new Neumann series of Bessel functions representations for solutions and the Gelfand-Levitan equation. The method allows one to reduce the inverse Sturm-Liouville problem directly to a system of linear algebraic equations, such that the potential is recovered from the first element of the solution vector. We prove the stability of the method and show its numerical efficiency with several numerical examples.
引用
收藏
页数:32
相关论文
共 50 条
  • [11] Partial Inverse Sturm-Liouville Problems
    Bondarenko, Natalia P.
    MATHEMATICS, 2023, 11 (10)
  • [12] A least-squares functional for solving inverse Sturm-Liouville problems
    Röhrl, N
    INVERSE PROBLEMS, 2005, 21 (06) : 2009 - 2017
  • [13] On a modified Numerov's method for inverse Sturm-Liouville problems
    Gao, Qin
    Zhao, Quanting
    Chen, Minhong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (02) : 412 - 426
  • [14] Sinc method in spectrum completion and inverse Sturm-Liouville problems
    Kravchenko, Vladislav V.
    Murcia-Lozano, L. Estefania
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) : 3130 - 3169
  • [15] A mapping method in inverse Sturm-Liouville problems with singular potentials
    A. M. Savchuk
    Proceedings of the Steklov Institute of Mathematics, 2008, 261 : 237 - 242
  • [16] Reconstruction method for inverse Sturm-Liouville problems with discontinuous potentials
    Rafler, M.
    Boeckmann, C.
    INVERSE PROBLEMS, 2007, 23 (03) : 933 - 946
  • [17] A Mapping Method in Inverse Sturm-Liouville Problems with Singular Potentials
    Savchuk, A. M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 261 (01) : 237 - 242
  • [18] Modified Numerov's method for inverse Sturm-Liouville problems
    Gao, Qin
    Cheng, Xiaoliang
    Huang, Zhengda
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 253 : 181 - 199
  • [19] Convergence of Numerov's method for inverse Sturm-Liouville problems
    Gao, Qin
    Zhao, Quanting
    Zheng, Xuan
    Ling, Yonghui
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 1 - 17
  • [20] The method of external excitation for solving generalized Sturm-Liouville problems
    Reutskiy, S. Yu.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2374 - 2386