Animal model for two-photon excitation in the eye

被引:0
|
作者
Bird, Mark [1 ,2 ,3 ]
Campbell, Melanie C. W. [1 ,2 ,3 ]
机构
[1] Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Sch Optometry, Waterloo, ON N2L 3G1, Canada
[3] Guelph Waterloo Phys Inst, Waterloo, ON, Canada
来源
关键词
two-photon excitation; photodynamic therapy; eye disease; spatial localization; temporal localization; optical model; age-related macular degeneration; image quality; optimal pupil size; adaptive optics;
D O I
10.1117/12.706561
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We wish to deliver Two-Photon Excitation (TPE) to the in vivo retina and to image its effects in order to understand and treat eye disease. A schematic model of the rat eye with a gradient refractive index in the crystalline lens is reconstructed in ZEMAX (TM). This model predicts the monochromatic aberrations as a function of pupil size and field angle and the change in the Point Spread Function (PSF) at best focus. A simple water model of the nonlinear pulse broadening effect has been used to predict the minimal temporal pulse width that will propagate to the retina. In a rat eye uncorrected for monochromatic aberrations, a pupil between 1mm and 1.8mm diameter delivers a peak intensity acceptable for two-photon effects. A somewhat larger diameter pupil (1.35-2.0mm) gives an optimum optical quality for imaging on the optical axis. Correction of the monochromatic aberrations with adaptive optics would improve both imaging and peak intensity. The effect of second order dispersion is dependent on the form of the dispersion relation used. Based on experimental results of second order dispersion, the minimum pulse width to reach the retina is approximately 30fs for the rat eye and approximately 60fs for the human eye.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Photobleaching of two-photon excitation in alive cell
    Chen, TS
    Zeng, SQ
    Luo, QM
    Zhang, ZH
    Zhou, W
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2002, 29 (02) : 261 - 266
  • [42] Coherent two-photon excitation of quantum dots
    Ostermann, L.
    Huber, T.
    Prilmueller, M.
    Solomon, G. S.
    Ritsch, H.
    Weihs, G.
    Predojevic, A.
    QUANTUM OPTICS, 2016, 9900
  • [43] Nuclear Excitation by Two-Photon Electron Transition
    Volotka, A. V.
    Surzhykov, A.
    Trotsenko, S.
    Plunien, G.
    Stoehlker, Th.
    Fritzsche, S.
    PHYSICAL REVIEW LETTERS, 2016, 117 (24)
  • [44] Two-photon fluorescence excitation in detection of biomolecules
    Soini, E
    Meltola, NJ
    Soini, AE
    Soukka, J
    Soini, JT
    Hänninen, PE
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2000, 28 : 70 - 74
  • [45] Two-photon excitation in small volumes.
    Lytle, FE
    Overway, KS
    Duhachek, SD
    Zugel, SA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 214 : 120 - ANYL
  • [46] Two-photon excitation in fluorescence lifetime imaging
    Gerritsen, HC
    Vroom, J
    Sytsma, J
    FLUORESCENCE MICROSCOPY AND FLUORESCENT PROBES, VOL 2, 1998, : 55 - 62
  • [47] Photodynamic therapy by nonresonant two-photon excitation
    König, K
    Riemann, I
    Fischer, P
    OPTICAL METHODS FOR TUMOR TREATMENT AND DETECTION: MECHANISMS AND TECHNIQUES IN PHOTODYNAMIC THERAPY VIII, PROCEEDINGS OF, 1999, 3592 : 43 - 49
  • [48] Two-photon excitation energy transfer microscopy
    Periasamy, A
    OPTICAL DIAGNOSTICS OF LIVING CELLS III, 2000, 3921 : 299 - 304
  • [49] Quantum interferometric two-photon excitation spectroscopy
    Chen, Yuanyuan
    de J Leon-Montiel, Roberto
    Chen, Lixiang
    NEW JOURNAL OF PHYSICS, 2022, 24 (11):
  • [50] Organic and biological luminophores for two-photon excitation
    Meshalkin, YP
    OPTICS AND SPECTROSCOPY, 1999, 86 (01) : 53 - 55