共 50 条
Suppressing the Shuttle Effect in Lithium-Sulfur Batteries by a UiO-66-Modified Polypropylene Separator
被引:73
|作者:
Fan, Yanpeng
[1
]
Niu, Zhihui
[1
]
Zhang, Fei
[1
]
Zhang, Rui
[1
]
Zhao, Yu
[1
]
Lu, Guang
[1
]
机构:
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, 199 Renai Rd, Suzhou 215123, Jiangsu, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
METAL-ORGANIC FRAMEWORK;
MOLECULAR-ORBITAL METHODS;
MISSING-LINKER DEFECTS;
POLYSULFIDE SHUTTLE;
BASIS-SETS;
CATHODE;
PERFORMANCE;
UIO-66;
COMPOSITES;
STABILITY;
D O I:
10.1021/acsomega.9b00884
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The lithium-sulfur battery is one of the most promising battery technologies with high energy density that exceeds the presently commercialized ones. The shuttle effect caused by the migration of soluble polysulfides to the lithium anode is known as one of the crucial issues that prevent the Li-S batteries from practical application. Modification of the separator is regarded as a convenient yet efficient strategy to alleviate the shuttle effect. In this report, we use a thermally stable and chemically robust metal-organic framework (MOF), UiO-66, as a physical and chemical barrier for soluble polysulfides to functionalize the commercial polypropylene separator. The Li-S cell assembled with such a separator shows a significantly improved cycling stability with an average specific capacity of ca. 720 mA h g(-1) at a current rate of 0.5 C for 500 cycles. Experimental and theoretical investigations indicate that the cell performance enhancement results from the physical restriction of the MOF barrier layer and strong chemical interaction between UiO-66 and polysulfides. The excellent thermal stability and chemical robustness (in acid/alkali solutions, conventional organic solvents, and polysulfide electrolytes) of UiO-66 make it highly competitive among various materials developed for separator modification in Li-S batteries.
引用
收藏
页码:10328 / 10335
页数:8
相关论文