Non-separating paths in 4-connected graphs

被引:15
|
作者
Kawarabayashi, Ken-ichi
Lee, Orlando
Yu, Xingxing
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Estadual Campinas, Inst Computacao, BR-13083971 Campinas, SP, Brazil
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[4] Nankai Univ, Ctr Coimbinator, LPMC, Tianjin 300071, Peoples R China
基金
日本学术振兴会; 美国国家科学基金会;
关键词
non-separating path; 4-connected graph; Lovasz conjecture;
D O I
10.1007/s00026-005-0240-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1975, Lovasz conjectured that for any positive integer k, there exists a minimum positive integer f (k) such that, for any two vertices x, y in any f (k)-connected graph G, there is a path P from x to y in G such that G V ( P) is k-connected. A result of Tutte implies f ( 1) = 3. Recently, f ( 2) = 5 was shown by Chen et al. and, independently, by Kriesell. In this paper, we show that f ( 2) = 4 except for double wheels.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 50 条