ASYMPTOTIC STABILITY OF TWO TYPES OF TRAVELING WAVES FOR SOME PREDATOR-PREY MODELS
被引:5
|
作者:
Zhang, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Xisanhuan Beilu 105, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Xisanhuan Beilu 105, Beijing 100048, Peoples R China
Zhang, Hao
[1
]
Izuhara, Hirofumi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Miyazaki, Fac Engn, 1-1 Gakuen Kibanadai Nishi, Miyazaki 8802192, JapanCapital Normal Univ, Sch Math Sci, Xisanhuan Beilu 105, Beijing 100048, Peoples R China
Izuhara, Hirofumi
[2
]
Wu, Yaping
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Xisanhuan Beilu 105, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Xisanhuan Beilu 105, Beijing 100048, Peoples R China
Wu, Yaping
[1
]
机构:
[1] Capital Normal Univ, Sch Math Sci, Xisanhuan Beilu 105, Beijing 100048, Peoples R China
[2] Univ Miyazaki, Fac Engn, 1-1 Gakuen Kibanadai Nishi, Miyazaki 8802192, Japan
Traveling waves;
asymptotic stability;
spectral analysis;
Evans function;
GLOBAL STABILITY;
FRONT SOLUTIONS;
EXISTENCE;
EQUATIONS;
SYSTEM;
D O I:
10.3934/dcdsb.2021046
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper is concerned with the asymptotic stability of wave fronts and oscillatory waves for some predator-prey models. By spectral analysis and applying Evans function method with some numerical simulations, we show that the two types of waves with noncritical speeds are spectrally stable and nonlinearly exponentially stable in some exponentially weighted spaces.
机构:
Southern Fed Univ, II Vorovich Inst Math Mech & Comp Sci, Rostov Na Donu 344006, Russia
Southern Math Inst VSC RAS, Vladikavkaz 362027, RussiaSouthern Fed Univ, II Vorovich Inst Math Mech & Comp Sci, Rostov Na Donu 344006, Russia