ASYMPTOTIC STABILITY OF TWO TYPES OF TRAVELING WAVES FOR SOME PREDATOR-PREY MODELS

被引:5
|
作者
Zhang, Hao [1 ]
Izuhara, Hirofumi [2 ]
Wu, Yaping [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Xisanhuan Beilu 105, Beijing 100048, Peoples R China
[2] Univ Miyazaki, Fac Engn, 1-1 Gakuen Kibanadai Nishi, Miyazaki 8802192, Japan
来源
关键词
Traveling waves; asymptotic stability; spectral analysis; Evans function; GLOBAL STABILITY; FRONT SOLUTIONS; EXISTENCE; EQUATIONS; SYSTEM;
D O I
10.3934/dcdsb.2021046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the asymptotic stability of wave fronts and oscillatory waves for some predator-prey models. By spectral analysis and applying Evans function method with some numerical simulations, we show that the two types of waves with noncritical speeds are spectrally stable and nonlinearly exponentially stable in some exponentially weighted spaces.
引用
收藏
页码:2323 / 2342
页数:20
相关论文
共 50 条
  • [1] TRAVELING WAVES IN PREDATOR-PREY SYSTEMS
    MISCHAIKOW, K
    REINECK, JF
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (05) : 1179 - 1214
  • [2] Traveling waves of predator-prey system with a sedentary predator
    Li, Hongliang
    Wang, Yang
    Yuan, Rong
    Ma, Zhaohai
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [3] Traveling waves for a nonlocal dispersal predator-prey model with two preys and one predator
    Zhao, Xu-Dong
    Yang, Fei-Ying
    Li, Wan-Tong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [4] Stability and bifurcation in two species predator-prey models
    Kusbeyzi, I.
    Aybar, O. O.
    Hacinliyan, A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 377 - 387
  • [5] Traveling Wave Solutions for Some Classes of Diffusive Predator-Prey Models
    Ding, Wei
    Huang, Wenzhang
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2016, 28 (3-4) : 1293 - 1308
  • [6] COEXISTENCE AND ASYMPTOTIC STABILITY IN STAGE-STRUCTURED PREDATOR-PREY MODELS
    Feng, Wei
    Cowen, Michael T.
    Lu, Xin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2014, 11 (04) : 823 - 839
  • [7] Traveling Waves in a Diffusive Predator-Prey Model Incorporating a Prey Refuge
    Wu, Xiujuan
    Luo, Yong
    Hu, Yizheng
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] Traveling wave solutions in predator-prey models with competition
    Lin, Guo
    Xing, Yibing
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2022, 15 (05)
  • [9] Traveling waves of some Holling-Tanner predator-prey system with nonlocal diffusion
    Cheng, Hongmei
    Yuan, Rong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 12 - 24
  • [10] INVASION GENERATES PERIODIC TRAVELING WAVES (WAVETRAINS) IN PREDATOR-PREY MODELS WITH NONLOCAL DISPERSAL
    Sherratt, Jonathan A.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (01) : 293 - 313