Complementary coded thermal wave imaging scheme for thermal non-destructive testing and evaluation

被引:18
|
作者
Mulaveesala, Ravibabu [1 ,2 ]
Arora, Vanita [1 ]
机构
[1] Indian Inst Technol Ropar, Dept Elect Engn, InfraRed Imaging Lab IRIL, Rupnagar, India
[2] PDPM Indian Inst Informat Technol Design & Mfg Ja, InfraRed Imaging Lab IRIL, Jabalpur, India
关键词
Non-destructive testing; pulse compression; complementary Golay codes; thermal wave imaging; PULSED PHASE THERMOGRAPHY; INSPECTION;
D O I
10.1080/17686733.2016.1229329
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Infrared thermography is a well-established technique for the non-destructive characterisation of various materials. This technique relies on the analysis of acquired temperature profile over the test sample to evaluate the presence of surface and sub-surface anomalies within the material. Over past decade coded thermal excitation schemes and associated post processing (signal/video processing) schemes have gained vital attention in infrared thermographic community in various fields. However, in thermal non-destructive testing the usage of coded excitations are still relatively uncommon. This paper explores the feasibility of using complementary Golay coded excitation in active thermography. The newly developed technique is shown to be effective in increasing temporal signal to noise ratio by suppressing side lobes of the compressed pulse. The present experimental investigation emphasises the defect detection capabilities of Golay coded thermal wave imaging to characterise a carbon fibre reinforced plastic material having blind holes and inclusions as defects. An investigation of spatial signal to noise ratio is also presented.
引用
收藏
页码:44 / 53
页数:10
相关论文
共 50 条
  • [31] Thermal Non-Destructive Testing for the Titanium Implants
    Zhu, Qifang
    Sun, Zeming
    Ma, Tongda
    Li, Pu
    Zhang, Donghui
    Vavilov, Vladimir P.
    CURRENT TRENDS IN THE DEVELOPMENT OF INDUSTRY, PTS 1 AND 2, 2013, 785-786 : 52 - +
  • [32] STEREOSCOPIC DEPTH ANALYSIS BY THERMAL WAVE TRANSMISSION FOR NON-DESTRUCTIVE EVALUATION
    BUSSE, G
    RENK, KF
    APPLIED PHYSICS LETTERS, 1983, 42 (04) : 366 - 368
  • [33] Multimodal plane wave imaging for non-destructive testing
    Le Jeune, Leonard
    Robert, Sebastien
    Villaverde, Eduardo Lopez
    Prada, Claire
    Proceedings of the 2015 ICU International Congress on Ultrasonics, 2015, 70 : 570 - 573
  • [34] Shearografic detection of thermal waves for non-destructive testing
    Menner, Philipp
    Busse, Gerd
    SPECKLE 2010: OPTICAL METROLOGY, 2010, 7387
  • [35] Rapid thermal non-destructive testing of aircraft components
    Bates, D
    Smith, G
    Lu, D
    Hewitt, J
    COMPOSITES PART B-ENGINEERING, 2000, 31 (03) : 175 - 185
  • [36] THERMAL WAVE REMOTE AND NON-DESTRUCTIVE INSPECTION OF POLYMERS
    BUSSE, G
    EYERER, P
    APPLIED PHYSICS LETTERS, 1983, 43 (04) : 355 - 357
  • [37] Thermal non-destructive testing and evaluation for subsurface slag detection: numerical modelling
    Arora, V
    Mulaveesala, R.
    Dua, G.
    Sharma, A.
    INSIGHT, 2020, 62 (05) : 264 - 268
  • [38] Non-destructive testing of jute-polypropylene composite using frequency-modulated thermal wave imaging
    Banerjee, D.
    Chattopadhyay, S. K.
    Chatterjee, K.
    Tuli, S.
    Jain, N.
    Goyal, I.
    Mukhopadhyay, S.
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2015, 28 (04) : 548 - 557
  • [39] Evaluation of thermal degradation of polymer based electronic materials by non-destructive testing
    Rafiee, P.
    Khatibi, G.
    Lederer, M.
    Zehetbauer, M.
    2ND INTERNATIONAL CONFERENCE ON RHEOLOGY AND MODELING OF MATERIALS (IC-RMM2), 2017, 790
  • [40] THERMAL WAVE PIEZOELECTRIC AND MICROPHONE DETECTION FOR NON-DESTRUCTIVE EVALUATION: A COMPARISON.
    Busse, Gerd
    Rosencwaig, Allan
    Journal of photoacoustics, 1982, 1 (03): : 365 - 369